Ceilometer observations of the boundary layer over Warsaw, Poland

Abstract

Jenoptik’s CHM 15k ceilometer was used to monitor the vertical structure of the atmospheric boundary layer (ABL) over Warsaw, from 2008 until 2011, on Mondays and Thursdays, in 24h periods. Hereby, we present an assessment of the signal-to-noise ratio along with a sensitivity study of signal smoothing methods developed in-house. With the proposed averaging, ceilometer attenuated-backscatter signals reached the high troposphere, which makes this sensor competitive to a single-wavelength elastic lidar. The smoothed signals were employed as an input for algorithms developed to automatically detect the ABL height, clouds, fog, and precipitation in the lower troposphere. The classification of weather conditions was validated by the METAR reports from the Warsaw Airport. The obtained ABL heights were compared to those assessed from radio-soundings from a nearby meteorological station WMO12374 in Legionowo. An inter-comparison of the ABL heights, derived by using the Jenoptik’s automated routine against the in-house developed algorithms, is in favor of the latter. The presented four annual cycles of the ABL height, obtained with various derivative-based methods, are the first such long-term results reported using the CHM 15k sensor in Eastern Europe.

This is a preview of subscription content, log in to check access.

References

  1. Asimakopoulos, D.N., C.G. Helmis, and J. Michopoulos (2004), Evaluation of SODAR method for the determination of the atmospheric boundary layer mixing height, Meteorol. Atmos. Phys. 85,1–3, 85–92, DOI: 10.1007/s00703-003-0036-9.

    Google Scholar 

  2. Boers, R., and S.H. Melfi (1987), Cold air outbreak during MASEX: Lidar observations and boundary-layer model test, Bound.-Lay. Meteorol. 39,1–2, 41–51, DOI: 10.1007/BF00121864.

    Article  Google Scholar 

  3. Brooks, I.M. (2003), Finding boundary layer top: Application of a wavelet covariance transform to lidar backscatter profiles, J. Atmos. Ocean. Tech. 20,8, 1092–1105, DOI: 10.1175/1520-0426(2003)020〈1092:FBLTAO〉2.0.CO;2.

    Article  Google Scholar 

  4. De Tomassi, F., and M.R. Perrone (2006), PBL and dust layer seasonal evolution by lidar and radiosounding measurements over a peninsular site, Atmos. Res. 80,1, 86–103, DOI: 10.1016/j.atmosres.2005.06.010.

    Article  Google Scholar 

  5. Emeis, S. (2010), Surface-Based Remote Sensing of the Atmospheric Boundary Layer, Atmospheric and Oceanographic Sciences Library, Vol. 40, Springer, Dordrecht, 200 pp., DOI: 10.1007/978-90-481-9340-0.

    Google Scholar 

  6. Eresmaa, N., A. Karppinen, S.M. Joffre, J. Räsänen, and H. Talvitie (2006), Mixing height determination by ceilometer, Atmos. Chem. Phys. 6,6, 1485–1493, DOI: 10.5194/acp-6-1485-2006.

    Article  Google Scholar 

  7. Heese, B., H. Flentje, D. Althausen, A. Ansmann, and S. Frey (2010), Ceilometer lidar comparison: backscatter coefficient retrieval and signal-to-noise ratio determination, Atmos. Meas. Tech. 3,6, 1763–1770, DOI: 10.5194/amt-3-1763-2010.

    Article  Google Scholar 

  8. Kłysik, K., and K. Fortuniak (1999), Temporal and spatial characteristics of the urban heat island of Łódź, Poland, Atmos. Environ. 33,24–25, 3885–3895, DOI: 10.1016/S1352-2310(99)00131-4.

    Google Scholar 

  9. Kovalev, V.A., and W.E. Eichinger (2004), Elastic Lidar: Theory, Practice, and Analysis Methods, John Wiley & Sons Inc., DOI: 10.1002/0471643173.

  10. Markowicz, K.M., T. Zieliński, A. Pietruczuk, M. Posyniak, O. Zawadzka, P. Makuch, I.S. Stachlewska, A.K. Jagodnicka, T. Petelski, W. Kumala, P. Sobolewski, and T. Stacewicz (2012), Remote sensing measurements of the volcanic ash plume over Poland in April 2010, Atmos. Environ. 48, 66–75, DOI: 10.1016/j.atmosenv.2011.07.015.

    Article  Google Scholar 

  11. Matthias, V., and J. Bösenberg (2002), Aerosol climatology for the planetary boundary layer derived from regular lidar measurements, Atmos. Res. 63,3–4, 221–245, DOI: 10.1016/S0169-8095(02)00043-1.

    Article  Google Scholar 

  12. O’Connor, E.J., A.J. Illingworth, and R.J. Hogan (2004), A technique for autocalibration of cloud lidar, J. Atmos. Ocean. Tech. 21,5, 777–786, DOI: 10.1175/1520-0426(2004)021〈0777:ATFAOC〉2.0.CO;2.

    Article  Google Scholar 

  13. Piadlowski, M., and I.S. Stachlewska (2012), On distortion in the CHM15k ceilometer signals. In: Proc. 26th ILRC International Laser Radar Conference, 25–29 July 2012, Porto Heli, Greece, 85–88.

  14. Piądłowski, M.J. (2010), Long-term ceilometer observations of the planetary boundary layer height over Warsaw, M.Sc. Thesis, 38 pp.

  15. Piironen, A.K., and E.W. Eloranta (1995), Convective boundary layer mean depths and cloud geometrical properties obtained from volume imaging lidar data, J. Geophys. Res. 100,D12, 25569–25576, DOI: 10.1029/94JD02604.

    Article  Google Scholar 

  16. Seibert, P., F. Beyrich, S.-E. Gryning, S. Joffre, A. Rasmussen, and P. Tercier (2000), Review and intercomparison of operational methods for the determination of mixing height, Atmos. Environ. 34,7, 1001–1027, DOI: 10.1016/S1352-2310(99)00349-0.

    Article  Google Scholar 

  17. Seidel, D.J., C.O. Ao, and K. Li (2010), Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis, J. Geophys. Res. 115, D16113, DOI: 10.1029/2009JD013680.

    Article  Google Scholar 

  18. Sicard, M., C. Pérez, F. Rocadenbosch, J.M. Baldasano, and G. García-Vizcaino (2006), Mixed-layer depth determination in the Barcelona coastal area from regular lidar measurements: methods, results and limitations, Bound.-Layer Meteorol. 119,1, 135–157, DOI: 10.1007/s10546-005-9005-9.

    Article  Google Scholar 

  19. Sokół, P. (2012), Observations of atmospheric boundary layer structure during the transition from nighttime to daytime conditions, M.Sc. Thesis, Faculty of Physics, University of Warsaw, 45 pp. (in Polish).

  20. Sorbjan, Z. (1989), Structure of the Atmospheric Boundary Layer, Prentice Hall, Englewood Cliffs.

    Google Scholar 

  21. Stachlewska, I.S., and C. Ritter (2010), On retrieval of lidar extinction profiles using Two-Stream and Raman techniques, Atmos. Chem. Phys. 10,6, 2813–2824, DOI: 10.5194/acp-10-2813-2010.

    Article  Google Scholar 

  22. Stachlewska, I.S., Markowicz K.M., and M. Piadlowski (2010), On forward Klett’s inversion of ceilometer signals. In: Proc. 25th ILRC International Laser Radar Conference, 5–9 July 2010, St. Petersburg, Russia, 1154–1157.

  23. Tsaknakis, G., A. Papayannis, P. Kokkalis, V. Amiridis, H.D. Kambezidis, R.E. Mamouri, G. Georgoussis, and G. Avdikos (2011), Inter-comparison of lidar and ceilometer retrievals for aerosol and Planetary Boundary Layer profiling over Athens, Greece, Atmos. Meas. Tech. 4,6, 1261–1273, DOI: 10.5194/amt-4-1261-2011.

    Article  Google Scholar 

  24. Welton, E.J., K.J. Voss, H.R. Gordon, H. Maring, A. Smirnov, B. Holben, B. Schmid, J.M. Livingston, P.A. Durkee, P. Formenti, and M.O. Andreae (2000), Ground-based lidar measurements of aerosols during ACE-2: Instrument description, results, and comparisons with other ground-based and airborne measurements, Tellus B 52,2, 636–651, DOI: 10.1034/j.1600-0889.2000.00025.x.

    Article  Google Scholar 

  25. Wiegner, M., and A. Geiss (2012), Aerosol profiling with the JenOptik ceilometer CHM15kx, Atmos. Meas. Tech. Discuss. 5, 3395–3430, DOI: 10.5194/amtd-5-3395-2012.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Iwona S. Stachlewska.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stachlewska, I.S., Piądłowski, M., Migacz, S. et al. Ceilometer observations of the boundary layer over Warsaw, Poland. Acta Geophys. 60, 1386–1412 (2012). https://doi.org/10.2478/s11600-012-0054-4

Download citation

Key words

  • atmospheric boundary layer
  • annual cycle
  • aerosol
  • ceilometer
  • lidar