Skip to main content

Thermal history and large scale differentiation of the Saturn’s satellite Rhea

Abstract

Thermal history of Rhea from the beginning of accretion is investigated. We developed a numerical model of convection combined with the parameterized theory. Large scale melting of the satellite’s matter and gravitational differentiation of silicates from ices are included. The results are confronted with observational data from Cassini spacecraft that indicate minor differentiation of the satellite’s interior. We suggest that partial differentiation of the satellite’s interior is accompanied (or followed) by the process of light fraction uprising to the surface. The calculation indicates that the partial differentiation of the matter of the satellite’s interior is possible only for narrow range of parameters. In particular, we found that the time from the formation of CAI (calciumaluminum rich inclusions in chondrites) to the end of accretion of Rhea is in the range of 3–4 My.

This is a preview of subscription content, access via your institution.

References

  • Castillo-Rogez, J. (2006), Internal structure of Rhea, J. Geophys. Res. 111, E11005, DOI: 10.1029/2004JE002379.

    Article  Google Scholar 

  • Castillo-Rogez, J., D. Matson, C. Sotin, T. Johnson, J. Lunine, and P. Thomas (2007), Iapetus’ geophysics: Rotation rate, shape, and equatorial ridge, Icarus 190,1, 179–202, DOI: 10.1016/j.icarus.2007.02.018.

    Article  Google Scholar 

  • Christensen, U. (1984), Convection with pressure and temperature-dependent non-Newtonian rheology, Geophys. J. Roy. Astron. Soc. 77,2, 343–384, DOI: 10.1111/j.1365-246X.1984.tb01939.x.

    Article  Google Scholar 

  • Czechowski, L. (1993), Theoretical approach to mantle convection. In: R. Teisseyre, L. Czechowski, and J. Leliwa-Kopystyński (eds.), Dynamics of The Earth’s Evolution, Elsevier, Amsterdam, 161–271.

    Google Scholar 

  • Czechowski, L. (2006), Parameterized model of convection driven by tidal and radiogenic heating, Adv. Space Res. 38,4, 788–793, DOI: 10.1016/ j.asr.2005.12.013.

    Article  Google Scholar 

  • Czechowski, L., and J. Leliwa-Kopystyński (2005), Convection driven by tidal and radiogenic heating in medium size icy satellites, Planet. Space Sci. 53,7, 749–769, DOI: 10.1016/j.pss.2005.01.004.

    Article  Google Scholar 

  • Davaille, A., and C. Jaupart (1993), Transient high-Rayleigh-number thermal convection with large viscosity variations, J. Fluid Mech. 253, 141–166, DOI:10.1017/S0022112093001740.

    Article  Google Scholar 

  • De Pater, I., and J.J. Lissauer (2001), Planetary Sciences, Cambridge University Press, Cambridge.

    Google Scholar 

  • Dumoulin, C., M.-P. Doin, and L. Fleitout (1999), Heat transport in stagnant lid convection with temperature- and pressure-dependent Newtonian or non-Newtonian rheology, J. Geophys. Res. 104,B6, 12759–12777, DOI:10.1029/1999JB900110.

    Article  Google Scholar 

  • Durham, W.B., S.H. Kirby, and L.A. Stern (1998), Rheology of planetary ices. In: B. Schmitt, C. de Bergh, and M. Festou (eds.), Solar System Ices, Kluwer Academic Publishers, Dordrecht, 63–78.

    Chapter  Google Scholar 

  • Ellsworth, K., and G. Schubert (1983), Saturn icy satellite: Thermal and structural models, Icarus 54,3, 490–510, DOI: 10.1016/0019-1035(83)90242-7.

    Article  Google Scholar 

  • Fischer, H.-J., and T. Spohn (1990), Thermal-orbital histories of viscoelastic models of Io (J1), Icarus 83,1, 39–65, DOI: 10.1016/0019-1035(90)90005-T.

    Article  Google Scholar 

  • Forni, O., A. Coradini, and C. Federico (1991), Convection and lithospheric strength in dione, an icy satellite of Saturn, Icarus 94,1, 232–245, DOI: 10.1016/0019-1035(91)90153-K.

    Article  Google Scholar 

  • Goldsby, D.L., and D.L. Kohlstedt (1997), Grain boundary sliding in fine-grained Ice-I, Scr. Mater. 37,9, 1399–1405.

    Article  Google Scholar 

  • Grasset, O., and E.M. Parmentier (1998), Thermal convection in a volumetrically heated, infinite Prandtl number fluid with strongly temperature-dependent viscosity Implications for planetary thermal evolution, J. Geophys. Res. 103,B8, 18171–18181, DOI: 10.1029/98JB01492.

    Article  Google Scholar 

  • Hobbs, P.V. (1974), Ice Physics, Oxford University Press, New York.

    Google Scholar 

  • Hussmann, H., F. Sohl, and T. Spohn (2006), Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects, Icarus 185,1, 257–273, DOI: 10.1016/j.icarus.2006.06.005.

    Article  Google Scholar 

  • Iess, L., N.J. Rappaport, P. Tortora, J. Lunine, J.W. Armstrong, S.W. Asmar, L. Somenzi, and F. Zingoni (2007), Gravity field and interior of Rhea from Cassini data analysis, Icarus 190,2, 585–593, DOI: 10.1016/ j.icarus.2007.03.027.

    Article  Google Scholar 

  • Kargel, J.S., and S. Pozio (1996), The volcanic and tectonic history of Enceladus, Icarus 119,2, 385–404, DOI: 10.1006/icar.1996.0026.

    Article  Google Scholar 

  • Landau, L., and E. Lifszic (1958), Mechanics of Continuous Media, Państwowe Wydawnictwo Naukowe, Warszawa (in Polish, see also English version: Fluid Mechanics, Reed Educational and Professional Publ., Oxford, 2000).

    Google Scholar 

  • Leliwa-Kopystyński, J., M. Maruyama, and T. Nakajima (2002), The water-ammonia phase diagram up to 300 MPa: Application to icy satellites, Icarus 159,2, 518–528, DOI: 10.1006/icar.2002.6932.

    Article  Google Scholar 

  • McKinnon, W.B. (1998), Geodynamics of icy satellites. In: B. Schmitt, C. de Bergh, and M. Festou (eds.), Solar System Ices, Kluwer Academic Publishers, Dordrecht, 525–550.

    Chapter  Google Scholar 

  • Merk, E., D. Breuer, and T. Spohn (2002), Numerical modeling of 26Al-induced radioactive melting of asteroids concerning accretion, Icarus 159,1, 183–191, DOI: 10.1006/icar.2002.6872.

    Article  Google Scholar 

  • Multhaup, K., and Spohn T. (2007), Stagnant lid convection in the mid-sized icy satellite of Saturn, Icarus 186,2, 420–435, DOI: 10.1016/ j.icarus.2006.09.001.

    Article  Google Scholar 

  • Ostro, S.J., R.D. West, M.A. Janssen, R.D. Lorenz, H.A. Zebker, G.J. Black, J.I. Lunine, L.C. Wye, R.M. Lopes-Gautier, S.D. Wall, C. Elachi, L. Roth, S. Hensley, K. Kelleher, G.A. Hamilton, Y. Gim, Y.Z. Anderson, R.A. Boehmer, W.T.K. Johnson, and the Cassini RADAR Team (2006), Cassini RADAR observations of Enceladus, Thethys, Dione, Rhea, Iapetus, Hyperion, and Phoebe, Icarus 183,2, 479–490, DOI: 10.1016/ j.icarus.2006.02.019.

    Article  Google Scholar 

  • Peale, S.J. (2003), Tidally induced volcanism, Celest. Mech. Dyn. Astr. 87,1-2, 129–155, DOI: 10.1023/A:1026187917994.

    Article  Google Scholar 

  • Peltier, W.R., and G.T. Jarvis (1982), Whole mantle convection and the thermal evolution of the earth, Phys. Earth Planet. Int. 29,3–4, 281–304, DOI:10.1016/0031-9201(82)90018-8.

    Article  Google Scholar 

  • Plescia, J.B. (1985), Geology of Rhea. In: 16th Lunar and Planetary Science Conference, 11–15 March 1985, Lunar and Planet Institute, Houston, 665–666.

    Google Scholar 

  • Prentice, A.J.R. (2006), Saturn’s icy moon Rhea: A prediction for its bulk chemical composition and physical structure at the time of the Cassini spacecraft first flyby, Publ. Astron. Soc. Aust. 23,1, 1–11, DOI: 10.1071/AS05041.

    Article  Google Scholar 

  • Prialnik, D., A. Bar-Nun, and M. Podolak (1987), Radiogenic heating of comets by Al-26 and implications for their time of formation, Astrophys. J. 319, 993–1002, DOI: 10.1086/165516.

    Article  Google Scholar 

  • Robuchon, G., G. Choblet, G. Tobie, O. Čadek, C. Sotin, and O. Grasset (2010), Coupling of thermal evolution and despinning of early Iapetus, Icarus 207,2, 959–971, DOI: 10.1016/j.icarus.2009.12.002.

    Article  Google Scholar 

  • Roscoe, R. (1952), The viscosity of suspensions of rigid spheres, Br. J. Appl. Phys. 3,8, 267–269, DOI: 10.1088/0508-3443/3/8/306.

    Article  Google Scholar 

  • Rothery, D.A. (1992), Satellites of the Outer Planets, Clarendon Press, Oxford.

    Google Scholar 

  • Schubert, G., T. Spohn, and R.T. Reynolds (1986), Thermal histories, compositions and internal structures of the moons of the solar system. In: J.A. Burns and M.S. Matthews (eds.), Satellites, University of Arizona Press, Tucson, 224–292.

    Google Scholar 

  • Schubert, G., D.L. Turcotte, and P. Olson (2001), Mantle Convection in the Earth and Planets, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Sharpe, H.N., and W.R. Peltier (1978), Parameterized mantle convection and the Earth’s thermal history, Geophys. Res. Lett. 5,9, 737–740, DOI:10.1029/GL005i009p00737.

    Article  Google Scholar 

  • Solomatov, V.S. (1995), Scaling of temperature- and stress-dependent viscosity convection, Phys. Fluids 7,2, 266–274, DOI: 10.1063/1.868624.

    Article  Google Scholar 

  • Thomas, P.C. (2010), Sizes, shapes, and derived properties of the saturnian satellites after the Cassini nominal mission, Icarus 208,1, 395–401, DOI:10.1016/j.icarus.2010.01.025.

    Article  Google Scholar 

  • Turcotte, D.L., and G. Schubert (2002), Geodynamics, John Wiley & Sons, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leszek Czechowski.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Czechowski, L. Thermal history and large scale differentiation of the Saturn’s satellite Rhea. Acta Geophys. 60, 1192–1212 (2012). https://doi.org/10.2478/s11600-012-0041-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-012-0041-9

Key words

  • medium-sized satellites
  • thermal evolution
  • gravitational differentiation