Acta Geophysica

, Volume 60, Issue 4, pp 1192–1212 | Cite as

Thermal history and large scale differentiation of the Saturn’s satellite Rhea

  • Leszek CzechowskiEmail author
Research Article


Thermal history of Rhea from the beginning of accretion is investigated. We developed a numerical model of convection combined with the parameterized theory. Large scale melting of the satellite’s matter and gravitational differentiation of silicates from ices are included. The results are confronted with observational data from Cassini spacecraft that indicate minor differentiation of the satellite’s interior. We suggest that partial differentiation of the satellite’s interior is accompanied (or followed) by the process of light fraction uprising to the surface. The calculation indicates that the partial differentiation of the matter of the satellite’s interior is possible only for narrow range of parameters. In particular, we found that the time from the formation of CAI (calciumaluminum rich inclusions in chondrites) to the end of accretion of Rhea is in the range of 3–4 My.

Key words

medium-sized satellites thermal evolution gravitational differentiation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Castillo-Rogez, J. (2006), Internal structure of Rhea, J. Geophys. Res. 111, E11005, DOI: 10.1029/2004JE002379.CrossRefGoogle Scholar
  2. Castillo-Rogez, J., D. Matson, C. Sotin, T. Johnson, J. Lunine, and P. Thomas (2007), Iapetus’ geophysics: Rotation rate, shape, and equatorial ridge, Icarus 190,1, 179–202, DOI: 10.1016/j.icarus.2007.02.018.CrossRefGoogle Scholar
  3. Christensen, U. (1984), Convection with pressure and temperature-dependent non-Newtonian rheology, Geophys. J. Roy. Astron. Soc. 77,2, 343–384, DOI: 10.1111/j.1365-246X.1984.tb01939.x.CrossRefGoogle Scholar
  4. Czechowski, L. (1993), Theoretical approach to mantle convection. In: R. Teisseyre, L. Czechowski, and J. Leliwa-Kopystyński (eds.), Dynamics of The Earth’s Evolution, Elsevier, Amsterdam, 161–271.Google Scholar
  5. Czechowski, L. (2006), Parameterized model of convection driven by tidal and radiogenic heating, Adv. Space Res. 38,4, 788–793, DOI: 10.1016/ j.asr.2005.12.013.CrossRefGoogle Scholar
  6. Czechowski, L., and J. Leliwa-Kopystyński (2005), Convection driven by tidal and radiogenic heating in medium size icy satellites, Planet. Space Sci. 53,7, 749–769, DOI: 10.1016/j.pss.2005.01.004.CrossRefGoogle Scholar
  7. Davaille, A., and C. Jaupart (1993), Transient high-Rayleigh-number thermal convection with large viscosity variations, J. Fluid Mech. 253, 141–166, DOI:10.1017/S0022112093001740.CrossRefGoogle Scholar
  8. De Pater, I., and J.J. Lissauer (2001), Planetary Sciences, Cambridge University Press, Cambridge.Google Scholar
  9. Dumoulin, C., M.-P. Doin, and L. Fleitout (1999), Heat transport in stagnant lid convection with temperature- and pressure-dependent Newtonian or non-Newtonian rheology, J. Geophys. Res. 104,B6, 12759–12777, DOI:10.1029/1999JB900110.CrossRefGoogle Scholar
  10. Durham, W.B., S.H. Kirby, and L.A. Stern (1998), Rheology of planetary ices. In: B. Schmitt, C. de Bergh, and M. Festou (eds.), Solar System Ices, Kluwer Academic Publishers, Dordrecht, 63–78.CrossRefGoogle Scholar
  11. Ellsworth, K., and G. Schubert (1983), Saturn icy satellite: Thermal and structural models, Icarus 54,3, 490–510, DOI: 10.1016/0019-1035(83)90242-7.CrossRefGoogle Scholar
  12. Fischer, H.-J., and T. Spohn (1990), Thermal-orbital histories of viscoelastic models of Io (J1), Icarus 83,1, 39–65, DOI: 10.1016/0019-1035(90)90005-T.CrossRefGoogle Scholar
  13. Forni, O., A. Coradini, and C. Federico (1991), Convection and lithospheric strength in dione, an icy satellite of Saturn, Icarus 94,1, 232–245, DOI: 10.1016/0019-1035(91)90153-K.CrossRefGoogle Scholar
  14. Goldsby, D.L., and D.L. Kohlstedt (1997), Grain boundary sliding in fine-grained Ice-I, Scr. Mater. 37,9, 1399–1405.CrossRefGoogle Scholar
  15. Grasset, O., and E.M. Parmentier (1998), Thermal convection in a volumetrically heated, infinite Prandtl number fluid with strongly temperature-dependent viscosity Implications for planetary thermal evolution, J. Geophys. Res. 103,B8, 18171–18181, DOI: 10.1029/98JB01492.CrossRefGoogle Scholar
  16. Hobbs, P.V. (1974), Ice Physics, Oxford University Press, New York.Google Scholar
  17. Hussmann, H., F. Sohl, and T. Spohn (2006), Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects, Icarus 185,1, 257–273, DOI: 10.1016/j.icarus.2006.06.005.CrossRefGoogle Scholar
  18. Iess, L., N.J. Rappaport, P. Tortora, J. Lunine, J.W. Armstrong, S.W. Asmar, L. Somenzi, and F. Zingoni (2007), Gravity field and interior of Rhea from Cassini data analysis, Icarus 190,2, 585–593, DOI: 10.1016/ j.icarus.2007.03.027.CrossRefGoogle Scholar
  19. Kargel, J.S., and S. Pozio (1996), The volcanic and tectonic history of Enceladus, Icarus 119,2, 385–404, DOI: 10.1006/icar.1996.0026.CrossRefGoogle Scholar
  20. Landau, L., and E. Lifszic (1958), Mechanics of Continuous Media, Państwowe Wydawnictwo Naukowe, Warszawa (in Polish, see also English version: Fluid Mechanics, Reed Educational and Professional Publ., Oxford, 2000).Google Scholar
  21. Leliwa-Kopystyński, J., M. Maruyama, and T. Nakajima (2002), The water-ammonia phase diagram up to 300 MPa: Application to icy satellites, Icarus 159,2, 518–528, DOI: 10.1006/icar.2002.6932.CrossRefGoogle Scholar
  22. McKinnon, W.B. (1998), Geodynamics of icy satellites. In: B. Schmitt, C. de Bergh, and M. Festou (eds.), Solar System Ices, Kluwer Academic Publishers, Dordrecht, 525–550.CrossRefGoogle Scholar
  23. Merk, E., D. Breuer, and T. Spohn (2002), Numerical modeling of 26Al-induced radioactive melting of asteroids concerning accretion, Icarus 159,1, 183–191, DOI: 10.1006/icar.2002.6872.CrossRefGoogle Scholar
  24. Multhaup, K., and Spohn T. (2007), Stagnant lid convection in the mid-sized icy satellite of Saturn, Icarus 186,2, 420–435, DOI: 10.1016/ j.icarus.2006.09.001.CrossRefGoogle Scholar
  25. Ostro, S.J., R.D. West, M.A. Janssen, R.D. Lorenz, H.A. Zebker, G.J. Black, J.I. Lunine, L.C. Wye, R.M. Lopes-Gautier, S.D. Wall, C. Elachi, L. Roth, S. Hensley, K. Kelleher, G.A. Hamilton, Y. Gim, Y.Z. Anderson, R.A. Boehmer, W.T.K. Johnson, and the Cassini RADAR Team (2006), Cassini RADAR observations of Enceladus, Thethys, Dione, Rhea, Iapetus, Hyperion, and Phoebe, Icarus 183,2, 479–490, DOI: 10.1016/ j.icarus.2006.02.019.CrossRefGoogle Scholar
  26. Peale, S.J. (2003), Tidally induced volcanism, Celest. Mech. Dyn. Astr. 87,1-2, 129–155, DOI: 10.1023/A:1026187917994.CrossRefGoogle Scholar
  27. Peltier, W.R., and G.T. Jarvis (1982), Whole mantle convection and the thermal evolution of the earth, Phys. Earth Planet. Int. 29,3–4, 281–304, DOI:10.1016/0031-9201(82)90018-8.CrossRefGoogle Scholar
  28. Plescia, J.B. (1985), Geology of Rhea. In: 16th Lunar and Planetary Science Conference, 11–15 March 1985, Lunar and Planet Institute, Houston, 665–666.Google Scholar
  29. Prentice, A.J.R. (2006), Saturn’s icy moon Rhea: A prediction for its bulk chemical composition and physical structure at the time of the Cassini spacecraft first flyby, Publ. Astron. Soc. Aust. 23,1, 1–11, DOI: 10.1071/AS05041.CrossRefGoogle Scholar
  30. Prialnik, D., A. Bar-Nun, and M. Podolak (1987), Radiogenic heating of comets by Al-26 and implications for their time of formation, Astrophys. J. 319, 993–1002, DOI: 10.1086/165516.CrossRefGoogle Scholar
  31. Robuchon, G., G. Choblet, G. Tobie, O. Čadek, C. Sotin, and O. Grasset (2010), Coupling of thermal evolution and despinning of early Iapetus, Icarus 207,2, 959–971, DOI: 10.1016/j.icarus.2009.12.002.CrossRefGoogle Scholar
  32. Roscoe, R. (1952), The viscosity of suspensions of rigid spheres, Br. J. Appl. Phys. 3,8, 267–269, DOI: 10.1088/0508-3443/3/8/306.CrossRefGoogle Scholar
  33. Rothery, D.A. (1992), Satellites of the Outer Planets, Clarendon Press, Oxford.Google Scholar
  34. Schubert, G., T. Spohn, and R.T. Reynolds (1986), Thermal histories, compositions and internal structures of the moons of the solar system. In: J.A. Burns and M.S. Matthews (eds.), Satellites, University of Arizona Press, Tucson, 224–292.Google Scholar
  35. Schubert, G., D.L. Turcotte, and P. Olson (2001), Mantle Convection in the Earth and Planets, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  36. Sharpe, H.N., and W.R. Peltier (1978), Parameterized mantle convection and the Earth’s thermal history, Geophys. Res. Lett. 5,9, 737–740, DOI:10.1029/GL005i009p00737.CrossRefGoogle Scholar
  37. Solomatov, V.S. (1995), Scaling of temperature- and stress-dependent viscosity convection, Phys. Fluids 7,2, 266–274, DOI: 10.1063/1.868624.CrossRefGoogle Scholar
  38. Thomas, P.C. (2010), Sizes, shapes, and derived properties of the saturnian satellites after the Cassini nominal mission, Icarus 208,1, 395–401, DOI:10.1016/j.icarus.2010.01.025.CrossRefGoogle Scholar
  39. Turcotte, D.L., and G. Schubert (2002), Geodynamics, John Wiley & Sons, New York.Google Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Wien 2012

Authors and Affiliations

  1. 1.Institute of Geophysics University of WarsawWarszawaPoland

Personalised recommendations