Advertisement

Acta Geophysica

, Volume 60, Issue 5, pp 1359–1385 | Cite as

Studies of aerosols advected to coastal areas with the use of remote techniques

  • Tymon Zieliński
  • Tomasz Petelski
  • Przemysław Makuch
  • Agata Strzałkowska
  • Agnieszka Ponczkowska
  • Krzysztof M. Markowicz
  • Georgius Chourdakis
  • George Georgoussis
  • Susanne Kratzer
Article

Abstract

This paper presents the results of the studies of aerosol optical properties measured using lidars and sun photometers. We describe two case studies of the combined measurements made in two coastal zones in Crete in 2006 and in Rozewie on the Baltic Sea in 2009. The combination of lidar and sun photometer measurements provides comprehensive information on both the total aerosol optical thickness in the entire atmosphere as well as the vertical structure of aerosol optical properties. Combination of such information with air mass back-trajectories and data collected at stations located on the route of air masses provides complete picture of the aerosol variations in the study area both vertically and horizontally. We show that such combined studies are especially important in the coastal areas where depending on air mass advection directions and altitudes the influence of fine or coarse mode (in this case possibly sea-salt) particles on the vertical structure of aerosol optical properties is an important issue to consider.

Key words

AOT remote sensing air trajectory AERONET ACCENT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Badarinath, K.V.S., S.K. Kharol, D.G. Kaskoutis, A.R. Sharma, V. Ramswamy, and H.D. Kambezidis (2010), Long-range transport of dust aerosols over the Arabian Sea and Indian region — A case study using satellite data and ground-based measurements, Global Planet. Change 72,3, 164–181, DOI: 10.1016/j.gloplacha.2010.02.003.CrossRefGoogle Scholar
  2. Blanchard, D.C., and L.D. Syzdek (1988), Film drop production as a function of bubble size, J. Geophys. Res. 93,C4, 3649–3654, DOI: 10.1029/JC093iC04p03649.CrossRefGoogle Scholar
  3. Dubovik, O., B. Holben, T.F. Eck, A. Smirnov, Y.J. Kaufman, M.D. King, D. Tanré, and I. Slutsker (2002), Variability of absorption and optical properties of key aerosol types observed in worldwide locations, J. Atmos. Sci. 59,3, 590–608, DOI: 10.1175/1520-0469(2002)059<0590: VOAAOP>2.0.CO;2.CrossRefGoogle Scholar
  4. Fairall, C.W., K.L. Davidson, and G.E. Schacher (1983), An analysis of the surface production of sea-salt aerosols, Tellus 35B,1, 31–39, DOI: 10.1111/j.1600-0889.1983.tb00005.x.CrossRefGoogle Scholar
  5. Fantoni, R., L. Fiorani, I.G. Okladnikov, and A. Palucci (2010), Local observations of primary production in the Ross Sea: results of a lidar-calibrated satellite algorithm, Optoelectron. Adv. Mat. — Rapid Commun. 4,5, 759–763.Google Scholar
  6. Fitzgerald, J.W. (1991), Marine aerosols: A review, Atmos. Environ. 25A,3/4, 533–545.Google Scholar
  7. Gao, F., K. Bergant, A. Filipčič, B. Forte, D.X. Hua, X.Q. Song, S. Stanič, D. Veberič, and M. Zavrtanik (2011), Observations of the atmospheric boundary layer across the land-sea transition zone using a scanning Mie lidar, J. Quant. Spectrosc. Radiat. Trans. 112,2, 182–188, DOI: 10.1016/j.jqsrt.2010.04.001.CrossRefGoogle Scholar
  8. Giannakaki, E., D.S. Balis, V. Amiridis, and C. Zerefos (2010), Optical properties of different aerosol types: seven years of combined Raman-elastic backscatter lidar measurements in Thessaloniki, Greece, Atmos. Meas. Tech. 3,3, 569–578, DOI: 10.5194/amt-3-569-2010.CrossRefGoogle Scholar
  9. Gong, S.L., L.A. Barrie, and J.P. Blanchet (1997), Modeling sea-salt aerosols in the atmosphere. 1. Model development, J. Geophys. Res. 102,D3, 3805–3818, DOI: 10.1029/96JD02953.CrossRefGoogle Scholar
  10. Kuśmierczyk-Michulec, J., M. Schulz, S. Ruellan, O. Krüger, E. Plate, R. Marks, G. de Leeuw, and H. Cachier (2001), Aerosol composition and related optical properties in the marine boundary layer over the Baltic Sea, J. Aerosol Sci. 32,8, 933–955, DOI: 10.1016/S0021-8502(00)00122-1.CrossRefGoogle Scholar
  11. Lelieveld, J., H. Berresheim, S. Borrmann, P.J. Crutzen, F.J. Dentener, H. Fischer, J. Feichter, P.J. Flatau, J. Heland, R. Holzinger, R. Korrmann, M.G. Lawrence, Z. Levin, K.M. Markowicz, N. Mihalopoulos, A. Minikin, V. Ramanathan, M. de Reus, G.J. Roelofs, H.A. Scheeren, J. Sciare, H. Schlager, M. Schultz, P. Siegmund, B. Steil, E.G. Stephanou, P. Stier, M. Traub, C. Warneke, J. Williams, and H. Ziereis (2002), Global air pollution crossroads over the Mediterranean, Science 298,5594, 794–799, DOI: 10.1126/science.1075457.CrossRefGoogle Scholar
  12. Markowicz, K.M., P.J. Flatau, A.E. Kardas, J. Remiszewska, K. Stelmaszczyk, and L. Woeste (2008), Ceilometer retrieval of the boundary layer vertical aero sol extinction structure, J. Atmos. Ocean. Techn. 25, 928–944, DOI: 10.1175/2007JTECHA1016.1.CrossRefGoogle Scholar
  13. Markowicz, K.M., T. Zieliński, S. Blindheim, M. Gausa, A.K. Jagodnicka, A.E. Kardas, W. Kumala, S.P. Malinowski, T. Petelski, M. Posyniak, and T. Stacewicz (2011), Study of vertical structure of aerosol optical properties with sun photometers and ceilometer during the MACRON campaign in 2007, Acta Geophys., 10.2478/s11600-011-0056-7.Google Scholar
  14. Monahan, E.C., and G. Mac Niocaill (1986), Oceanic Whitecaps and their Role in Air-Sea Exchange Processes, D. Reidel Publ. Co., Dordrecht.Google Scholar
  15. Morys, M., F.M. Mims III, S. Hagerup, S.E. Anderson, A. Baker, J. Kia, and T. Walkup (2001), Design, calibration, and performance of MICROTOPS II handheld ozone monitor and Sun photometer, J. Geophys. Res. 106,D13, 14573–14582, DOI: 10.1029/2001JD900103.CrossRefGoogle Scholar
  16. Petelski, T., and J. Piskozub (2006), Vertical coarse aerosol fluxes in the atmospheric surface layer over the North Polar Waters of the Atlantic, J. Geophys. Res. 111, C06039, DOI: 10.1029/2005JC003295.CrossRefGoogle Scholar
  17. Ponczkowska, A., T. Zielinski, T. Petelski, K. Markowicz, G. Chourdakis, and G. Georgoussis (2009), Aerosol optical depth measured at different coastal boundary layers and its links with synoptic-scale features, Remote Sens. 1,3, 557–576, DOI: 10.3390/sensors90rs1030557.CrossRefGoogle Scholar
  18. Rajeev, K., K. Parameswaran, B.V. Thampi, M.K. Mishra, A.K.M. Nair, and S. Meenu (2010), Altitude distribution of aerosols over Southeast Arabian Sea coast during pre-monsoon season: Elevated layers, long-range transport and atmospheric radiative heating, Atmos. Environ. 44,21–22, 2597–2604, DOI; 10.1016/j.atmosenv.2010.04.014.CrossRefGoogle Scholar
  19. Resch, F.J., J.S. Darrozes, and G.M. Afeti (1986), Marine liquid aerosol production from bursting of air bubbles, J. Geophys. Res. 91,C1, 1019–1029, DOI: 10.1029/JC091iC01p01019.CrossRefGoogle Scholar
  20. Schifrin, K.S., O.A. Yershov, E.L. Lysenko, and B.N. Volkov (1980), Optical studies of aerosol structure over the island of Kikhnu. In: K.S. Shifrin (ed.), Optical Methods of Studying the Oceans and Inland Waters, Tallinn, 244–248 (in Russian).Google Scholar
  21. Smirnov, A., B.N. Holben, T.F. Eck, O. Dubovik, and I. Slutsker (2000), Cloudscreening and quality control algorithms for the AERONET database, Remote Sens. Environ. 73, 337–349, DOI: 10.1016/S0034-4257(00)00109-7.CrossRefGoogle Scholar
  22. Smirnov, A., B.N. Holben, T.F. Eck, I. Slutsker, B. Chatenet, and R.T. Pinker (2002), Diurnal variability of aerosol optical depth observed at AERONET (Aerosol Robotic Network) sites, Geophys. Res. Lett. 29,23, 2115, DOI: 10.1029/2002GL016305.CrossRefGoogle Scholar
  23. Smirnov, A., B.N. Holben, S.M. Sakerin, D.M. Kabanov, I. Slutsker, M. Chin, T.L. Diehl, L.A. Remer, R. Kahn, A. Ignatov, L. Liu, M. Mishchenko, T.F. Eck, T.L. Kucsera, D. Giles, and O.V. Kopelevich (2006), Ship-based aerosol optical depth measurements in the Atlantic Ocean: Comparison with satellite retrievals and GOCART model, Geophys. Res. Lett. 33, L14817, DOI: 10.1029/2006GL026051.CrossRefGoogle Scholar
  24. Vignati, E., G. de Leeuw, and R. Berkowicz (2001), Modeling coastal aerosol transport and effects of surf-produced aerosols on processes in the marine atmospheric boundary layer, J. Geophys. Res. 106,D17, 20225–20238, DOI: 10.1029/2000JD000025.CrossRefGoogle Scholar
  25. Weller, M., and U. Leiterer (1988), Experimental data on spectral aerosol optical thickness and its global distribution, Beitr. Phys. Atmos. 61, 1–9.Google Scholar
  26. Welton, E.J., K.J. Voss, P.K. Quinn, P.J. Flatau, K. Markowicz, J.R. Campbell, J.D. Spinhirne, H.R. Gordon, and J.E. Johnson (2002), Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micropulse lidars, J. Geophys. Res. 107, 8019, DOI: 10.1029/2000JD000038.CrossRefGoogle Scholar
  27. Wendisch, M., W. Von Hoyningen-Huene (1994), Possibility of refractive index determination of atmospheric aerosol particles by ground-based solar extinction and scattering measurements, Atmos. Environ. 28,5, 785–792, DOI: 10.1016/1352-2310(94)90237-2.CrossRefGoogle Scholar
  28. Witek, M.L., P.J. Flatau, P.K. Quinn, and D.L. Westphal (2007), Global sea-salt modeling: Results and validation against multicampaign shipboard measurements, J. Geophys. Res. 112, D08215, DOI: 10.1029/2006JD007779.CrossRefGoogle Scholar
  29. Wu, J. (1988), Bubbles in the near-surface ocean: A general description, J. Geophys. Res. 93,C1, 587–590, DOI: 10.1029/JC093iC01p00587.CrossRefGoogle Scholar
  30. Wu, J. (1990), Comment on “Film drop production as a function of bubble size” by D.C. Blanchard and L.D. Syzdek, J. Geophys. Res. 95,C5, 7389–7391, DOI: 10.1029/JC095iC05p07389.CrossRefGoogle Scholar
  31. Zhang, M., K. Carder, F.E. Muller-Karger, Z. Lee, and D.B. Goldgof (1999), Noise reduction and atmospheric correction for coastal applications of landsat thematic mapper imagery, Remote Sens. Environ. 70,2, 167–180, DOI: 10.1016/S0034-4257(99)00031-0.CrossRefGoogle Scholar
  32. Zieliński, T., and A. Zieliński (2002), Aerosol extinction and aerosol optical thickness in the atmosphere over the Baltic Sea determined with lidar, J. Aerosol Sci. 33,6, 907–921, DOI: 10.1016/S0021-8502(02)00043-5.CrossRefGoogle Scholar
  33. Zielinski, T., and B. Pflug (2007), Lidar-based studies of aerosol optical properties over coastal areas, Sensors 7,12, 3347–3365, DOI: 10.3390/s7123347.CrossRefGoogle Scholar
  34. Zielinski, T., and J. Piskozub (2005), Studies of aerosols in the marine boundary layer in the coastal area during the EOPACE’99 campaign, Bound.-Layer Meteorol. 116,3, 533–541, DOI: 10.1007/s10546-005-0904-6.CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2011

Authors and Affiliations

  • Tymon Zieliński
    • 1
  • Tomasz Petelski
    • 1
  • Przemysław Makuch
    • 1
  • Agata Strzałkowska
    • 1
  • Agnieszka Ponczkowska
    • 1
  • Krzysztof M. Markowicz
    • 2
  • Georgius Chourdakis
    • 3
  • George Georgoussis
    • 3
  • Susanne Kratzer
    • 4
  1. 1.Institute of OceanologyPolish Academy of SciencesSopotPoland
  2. 2.Institute of Geophysics, Faculty of PhysicsUniversity of WarsawWarsawPoland
  3. 3.Raymetrics S.A.AthensGreece
  4. 4.Department of Systems EcologyStockholm UniversityStockholmSweden

Personalised recommendations