Study of vertical structure of aerosol optical properties with sun photometers and ceilometer during the MACRON campaign in 2007

Abstract

This paper presents the measurements of a vertical structure of aerosol optical properties performed during the MACRON (Maritime Aerosol, Clouds and Radiation Observation in Norway) campaign, which took place in July and August 2007 at ALOMAR observatory on Andøya island (69.279°N, 16.009°E, elevation 380 m a.s.l.). The mean value of the aerosol optical thickness (AOT) at 500 nm during campaign was 0.12. Significant increase of the AOT above longtime mean value was observed on 7 and 8 August 2007 when the AOT exceeded 0.4 at 500 nm. Analyses of back trajectories show the aerosol transported from over Africa and Central Europe. The aerosol extinction coefficient obtained from the synergy of ceilometer and sun photometer observations reached 0.05–0.08 km−1 (at 1064 nm) in the dust layer. The single scattering albedo at the ALOMAR observatory decreased during the dust episode to 0.93–0.94, which indicates some absorptive aerosols in the lower PBL.

This is a preview of subscription content, log in to check access.

References

  1. Berkoff, T.A., E.J. Welton, J.R. Campbell, V.S. Scott, and J.D. Spinhirne (2003), Investigation of overlap correction techniques for the Micro-Pulse Lidar NETwork (MPLNET). In: Proc. Geoscience and Remote Sensing Symp. 2003, IGARSS’03, Toulouse, France, IEEE International, Vol. 7, 4395–4397, DOI: 10.1109/IGARSS.2003.1295527.

    Google Scholar 

  2. Charlson, R.J., S.E. Schwartz, J.M. Hales, R.D. Cess, J.A. Coakley, Jr., J.E. Hansen, and D.J. Hofmann (1992), Climate forcing by anthropogenic aerosols, Science 255,5043, 423–430, DOI: 10.1126/science.255.5043.423.

    Article  Google Scholar 

  3. Chýlek, P., and J.A. Coakley, Jr. (1974), Aerosols and climate, Science 183,4120, 75–77, DOI: 10.1126/science.183.4120.75.

    Article  Google Scholar 

  4. Draxler, R.R., and G.D. Rolph (2010), HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website, NOAA Air Resources Laboratory, Silver Spring, MD, USA (http://ready.arl.noaa.gov/HYSPLIT.php).

    Google Scholar 

  5. Engvall, A.-C., R. Krejci, J. Ström, R. Treffeisen, R. Scheele, O. Hermansen, and J. Paatero (2008), Changes in aerosol properties during spring-summer period in the Arctic troposphere, Atmos. Chem. Phys. 8,3, 445–462, DOI: 10.5194/acp-8-445-2008.

    Article  Google Scholar 

  6. Eresmaa, N., A. Karppinen, S.M. Joffre, J. Räsänen, and H. Talvitie (2006), Mixing height determination by ceilometer, Atmos. Chem. Phys. 6, 1485–1493, DOI: 10.5194/acp-6-1485-2006.

    Article  Google Scholar 

  7. Fernald, F.G (1984), Analysis of atmospheric lidar observations: some comments, Appl. Opt. 23,5, 652–653, DOI: 10.1364/AO.23.000652.

    Article  Google Scholar 

  8. Flentje, H., B. Heese, J. Reichardt, and W. Thomas (2010), Aerosol profiling using the ceilometer network of the German Meteorological Service, Atmos. Meas. Tech. Discuss. 3,4, 3643–3673, DOI: 10.5194/amtd-3-3643-2010.

    Article  Google Scholar 

  9. Frey, S., K. Poenitz, G. Teschke, and H. Wille (2010), Detection of aerosol layers with ceilometers and the recognition of the mixed layer depth. In: Proc. Int. Symp. for Advancement of Boundary Layer Remote (ISARS), 3646–3647.

  10. Frioud, M., V. Mitev, R. Matthey, C.H. Häberli, H. Richner, R. Werner, and S. Vogt (2003), Elevated aerosol stratification above the Rhine Valley under strong anticyclonic conditions, Atmos. Environ. 37,13, 1785–1797, DOI: 10.1016/S1352-2310(03)00049-9.

    Article  Google Scholar 

  11. Heese, B., H. Flentje, D. Althausen, A. Ansmann, and S. Frey (2010), Ceilometerlidar inter-comparision: backscatter coefficient retrieval and signal-to-noise ratio determination, Atmos. Meas. Tech. Discuss. 3,4, 3907–3924, DOI: 10.5194/amtd-3-3907-2010.

    Article  Google Scholar 

  12. Heidam, N.Z., J. Christensen, P. Wahlin, and H. Skov (2004), Arctic atmospheric contaminants in NE Greenland: levels, variations, origins, transport, transformations and trends 1990–2001, Sci. Total Environ. 331,1–3, 5–28, DOI: 10.1016/j.scitotenv.2004.03.033.

    Article  Google Scholar 

  13. Herber, A., L.W. Thomason, H. Gernandt, U. Leiterer, D. Nagel, K.-H. Schulz, J. Kaptur, T. Albrecht, and J. Notholt (2002), Continuous day and night aerosol optical depth observations in the Arctic between 1991 and 1999, J. Geophys. Res. 107,D10, 4097, DOI: 10.1029/2001JD000536.

    Article  Google Scholar 

  14. Hillamo, R., V.-M. Kerminen, M. Aurela, T. Mäkelä, W. Maenhaut, and C. Leck (2001), Modal structure of chemical mass size distribution in the high Arctic aerosol, J. Geophys. Res. 106,D21, 27555–27571, DOI: 10.1029/2001JD001119.

    Article  Google Scholar 

  15. Kardas, A.E., K.M. Markowicz, K. Stelmaszczyk, G. Karasiński, S.P. Malinowski, T. Stacewicz, L. Woeste, and C. Hochhertz (2010), Saharan aerosol sensed over Warsaw by backscatter depolarization lidar, Opt. Appl. 40,1, 219–237.

    Google Scholar 

  16. Khattatov, V.U., A.E. Tyabotov, A.P. Alekseyev, A.A. Postnov, and E.A. Stulov (1997), Aircraft lidar studies of the Arctic haze and their meteorological interpretation, Atmos. Res. 44,1–2, 99–111, DOI: 10.1016/S0169-8095(97)00011-2.

    Article  Google Scholar 

  17. Klett, J.D. (1985), Lidar inversion with variable backscatter/extinction ratios, Appl. Opt. 24,11, 1638–1643, DOI: 10.1364/AO.24.001638.

    Article  Google Scholar 

  18. Law, K.S., and A. Stohl (2007), Arctic air pollution: Origins and impacts, Science 315,5818, 1537–1540, DOI: 10.1126/science.1137695.

    Article  Google Scholar 

  19. Leck, C., and E.K. Bigg (2005a), Biogenic particles in the surface microlayer and overlaying atmosphere in the central Arctic Ocean during summer, Tellus B 57,4, 305–316, DOI: 10.1111/j.1600-0889.2005.00148.x.

    Article  Google Scholar 

  20. Leck, C., and E.K. Bigg (2005b), Source and evolution of the marine aerosol — A new perspective, Geophys. Res. Lett. 32, L19803, DOI: 10.1029/2005GL023651.

    Article  Google Scholar 

  21. Lim, C.-J., M.-D. Cheng, and W.H. Schroeder (2001), Transport patterns and potential sources of total gaseous mercury measured in Canadian high Arctic in 1995, Atmos. Environ. 35,6, 1141–1154, DOI: 10.1016/S1352-2310(00)00262-4.

    Article  Google Scholar 

  22. Maciszewska, A.E., K.M. Markowicz, and M.L. Witek (2010), A multiyear analysis of aerosol optical thickness over Europe and Central Poland using NAAPS model simulation, Acta Geophys. 58,6, 1147–1163, 10.2478/s11600-010-0034-5.

    Article  Google Scholar 

  23. Markowicz, K.M., P.J. Flatau, A.E. Kardas, J. Remiszewska, K. Stelmaszczyk, and L. Woeste (2008), Ceilometer retrieval of t he boundary layer vertical aerosol extinction structure, J. Atmos. Ocean. Technol. 25,6, 928–944, DOI: 10.1175/2007JTECHA1016.1.

    Article  Google Scholar 

  24. Martucci, G., C. Milroy, and C.D. O’Dowd (2010), Detection of cloud-base height using Jenoptik CHM15K and Vaisala CL31 ceilometers, J. Atmos. Oceanic Technol. 27,2, 305–318, DOI: 10.1175/2009JTECHA1326.1

    Article  Google Scholar 

  25. McKendry, I.G., D. van der Kamp, K.B. Strawbridge, A. Christen, and B. Crawford (2009), Simultaneous observations of boundary-layer aerosol layers with CL31 ceilometer and 1064/532 nm lidar, Atmos. Environ. 43,36, 5847–5852, DOI: 10.1016/j.atmosenv.2009.07.063.

    Article  Google Scholar 

  26. Morys, M., F.M. Mims III, S. Hagerup, S.E. Anderson, A. Baker, J. Kia, and T. Walkup (2001), Design, calibration, and performance of MICROTOPS II handheld ozone monitor and Sun photometer, J. Geophys. Res. 106,D13, 14573–14582, DOI: 10.1029/2001JD900103.

    Article  Google Scholar 

  27. Mulcahy, J.P., C.D. O’Dowd, S.G. Jennings, and D. Ceburnis (2008), Significant enhancement of aerosol optical depth in marine air under high wind conditions, Geophys. Res. Lett. 35, L16810, DOI: 10.1029/2008GL034303.

    Article  Google Scholar 

  28. Münkel, C., N. Eresmaa, J. Räsänen, and A. Karppinen (2007), Retrieval of mixing height and dust concentration with lidar ceilometer, Bound. Lay. Meteorol. 124, 117–128, DOI: 10.1007/s10546-006-9103-3.

    Article  Google Scholar 

  29. Myhre, C.L., C. Toledano, G. Myhre, K. Stebel, K.E. Yttri, V. Aaltonen, M. Johnsrud, M. Frioud, V. Cachorro, A. de Frutos, H. Lihavainen, J.R. Campbell, A.P. Chaikovsky, M. Shiobara, E.J. Welton, and K. Tørseth (2007), Regional aerosol optical properties and radiative impact of the extreme smoke event in the European Arctic in spring 2006, Atmos. Chem. Phys. 7,22, 5899–5915, DOI: 10.5194/acp-7-5899-2007.

    Article  Google Scholar 

  30. Nagel, D., A. Herber, L.W. Thomason, and U. Leiterer (1998), Vertical distribution of the spectral aerosol optical depth in the Arctic from 1993 to 1996, J. Geophys. Res. 103,D2, 1857–1870, DOI: 10.1029/97JD02678.

    Article  Google Scholar 

  31. O’Connor, E.J., A.J. Illingworth, and R.J. Hogan (2004), A technique for autocalibration of cloud lidar, J. Atmos. Oceanic Technol. 21,5, 777–786, DOI: 10.1175/1520-0426(2004)021<0777:ATFAOC>2.0.CO;2.

    Article  Google Scholar 

  32. Petelski, T., and J. Piskozub (2006), Vertical coarse aerosol fluxes in the atmospheric surface layer over the North Polar Waters of the Atlantic, J. Geophys. Res. 111, C06039, DOI: 10.1029/2005JC003295.

    Article  Google Scholar 

  33. Quinn, P.K., G. Shaw, E. Andrews, E.G. Dutton, T. Ruoho-Airola, and S.L. Gong (2007), Arctic haze: current trends and knowledge gaps, Tellus B 59,1, 99–114, DOI: 10.1111/j.1600-0889.2006.00238.x.

    Article  Google Scholar 

  34. Randles, C.A., L.M. Russell, and V. Ramaswamy (2004), Hygroscopic and optical properties of organic sea salt aerosol and consequences for climate forcing, Geophys. Res. Lett. 31, L16108, DOI: 10.1029/2004GL020628.

    Article  Google Scholar 

  35. Rodgers, C.D. (2000), Inverse Methods for Atmospheric Sounding: Theory and Practice, World Scientific Publ., Singapore, 200 pp.

    Google Scholar 

  36. Roy, G., S. Hayman, and W. Julian (2001), Sky analysis from CCD images: cloud cover, Lighting Res. Technol. 33,4, 211–221, DOI: 10.1177/136578280103300402.

    Article  Google Scholar 

  37. Sasano, Y., E.V. Browell, and S. Ismail (1985), Error caused by using a constant extinction/backscattering ratio in the lidar solution, Appl. Opt. 24,22, 3929–3932, DOI: 10.1364/AO.24.003929.

    Article  Google Scholar 

  38. Stelmaszczyk, K., M. Dell’Aglio, S. Chudzyński, T. Stacewicz, and L. Wöste (2005), Analytical function for lidar geometrical compression form-factor calculations, Appl. Opt. 44,7, 1323–1331, DOI: 10.1364/AO.44.001323.

    Article  Google Scholar 

  39. Sundström, A.-M., T. Nousiainen, and T. Petäjä (2009), On the quantitative lowlevel aerosol measurements using ceilometer-type lidar, J. Atmos. Oceanic Technol. 26,11, 2340–2352, DOI: 10.1175/2009JTECHA1252.1.

    Article  Google Scholar 

  40. Tomasi, C., V. Vitale, A. Lupi, C. Di Carmine, M. Campanelli, A. Herber, R. Treffeisen, R.S. Stone, E. Andrews, S. Sharma, V. Radionov, W. von Hoyningen-Huene, K. Stebel, G.H. Hansen, C.L. Myhre, C. Wehrli, V. Aaltonen, H. Lihavainen, A. Virkkula, R. Hillamo, J. Ström, C. Toledano, V.E. Cachorro, P. Ortiz, A.M. de Frutos, S. Blindheim, M. Frioud, M. Gausa, T. Zieliński, T. Petelski, and T. Yamanouchi (2007), Aerosols in polar regions: A historical overview based on optical depth and in situ observations, J. Geophys. Res. 112, D16205, DOI: 10.1029/2007JD008432.

    Article  Google Scholar 

  41. Treffeisen, R., P. Tunved, J. Ström, A. Herber, J. Bareiss, A. Helbig, R.S. Stone, W. Hoyningen-Huene, R. Krejci, A. Stohl, and R. Neuber (2007), Arctic smoke — aerosol characteristics during a record smoke event in the European Arctic and its radiative impact, Atmos. Chem. Phys. 7,11, 3035–3053, DOI: 10.5194/acp-7-3035-2007.

    Article  Google Scholar 

  42. Welton, E.J., and J.R. Campbell (2002), Micropulse lidar signals: Uncertainty analysis, J. Atmos. Oceanic Technol. 19,12, 2089–2094, DOI: 10.1175/1520-0426(2002)019<2089:MLSUA>2.0.CO;2.

    Article  Google Scholar 

  43. Welton, E.J., K.J. Voss, P.K. Quinn, P.J. Flatau, K. Markowicz, J.R. Campbell, J.D. Spinhirne, H.R. Gordon, and J.E. Johnson (2002), Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micropulse lidars, J. Geophys. Res. 107,D19, 8019, DOI: 10.1029/2000JD000038.

    Article  Google Scholar 

  44. Witek, M.L., P.J. Flatau, P.K. Quinn, and D.L. Westphal (2007), Global sea-salt modeling: Results and validation against multicampaign shipboard measurements, J. Geophys. Res. 112, D08215, DOI: 10.1029/2006JD007779.

    Article  Google Scholar 

  45. Zieliński, T., and A. Zieliński (2002), Aerosol extinction and aerosol optical thickness in the atmosphere over the Baltic Sea determined with lidar, J. Aerosol Sci. 33,6, 907–921, DOI: 10.1016/S0021-8502(02)00043-5.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Krzysztof M. Markowicz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Markowicz, K.M., Zieliński, T., Blindheim, S. et al. Study of vertical structure of aerosol optical properties with sun photometers and ceilometer during the MACRON campaign in 2007. Acta Geophys. 60, 1308–1337 (2012). https://doi.org/10.2478/s11600-011-0056-7

Download citation

Key words

  • aerosol optical thickness
  • aerosol extinction
  • single scattering albedo
  • remote sensing retrieval