Skip to main content

Advertisement

Log in

Study of vertical structure of aerosol optical properties with sun photometers and ceilometer during the MACRON campaign in 2007

  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

This paper presents the measurements of a vertical structure of aerosol optical properties performed during the MACRON (Maritime Aerosol, Clouds and Radiation Observation in Norway) campaign, which took place in July and August 2007 at ALOMAR observatory on Andøya island (69.279°N, 16.009°E, elevation 380 m a.s.l.). The mean value of the aerosol optical thickness (AOT) at 500 nm during campaign was 0.12. Significant increase of the AOT above longtime mean value was observed on 7 and 8 August 2007 when the AOT exceeded 0.4 at 500 nm. Analyses of back trajectories show the aerosol transported from over Africa and Central Europe. The aerosol extinction coefficient obtained from the synergy of ceilometer and sun photometer observations reached 0.05–0.08 km−1 (at 1064 nm) in the dust layer. The single scattering albedo at the ALOMAR observatory decreased during the dust episode to 0.93–0.94, which indicates some absorptive aerosols in the lower PBL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berkoff, T.A., E.J. Welton, J.R. Campbell, V.S. Scott, and J.D. Spinhirne (2003), Investigation of overlap correction techniques for the Micro-Pulse Lidar NETwork (MPLNET). In: Proc. Geoscience and Remote Sensing Symp. 2003, IGARSS’03, Toulouse, France, IEEE International, Vol. 7, 4395–4397, DOI: 10.1109/IGARSS.2003.1295527.

    Google Scholar 

  • Charlson, R.J., S.E. Schwartz, J.M. Hales, R.D. Cess, J.A. Coakley, Jr., J.E. Hansen, and D.J. Hofmann (1992), Climate forcing by anthropogenic aerosols, Science 255,5043, 423–430, DOI: 10.1126/science.255.5043.423.

    Article  Google Scholar 

  • Chýlek, P., and J.A. Coakley, Jr. (1974), Aerosols and climate, Science 183,4120, 75–77, DOI: 10.1126/science.183.4120.75.

    Article  Google Scholar 

  • Draxler, R.R., and G.D. Rolph (2010), HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website, NOAA Air Resources Laboratory, Silver Spring, MD, USA (http://ready.arl.noaa.gov/HYSPLIT.php).

    Google Scholar 

  • Engvall, A.-C., R. Krejci, J. Ström, R. Treffeisen, R. Scheele, O. Hermansen, and J. Paatero (2008), Changes in aerosol properties during spring-summer period in the Arctic troposphere, Atmos. Chem. Phys. 8,3, 445–462, DOI: 10.5194/acp-8-445-2008.

    Article  Google Scholar 

  • Eresmaa, N., A. Karppinen, S.M. Joffre, J. Räsänen, and H. Talvitie (2006), Mixing height determination by ceilometer, Atmos. Chem. Phys. 6, 1485–1493, DOI: 10.5194/acp-6-1485-2006.

    Article  Google Scholar 

  • Fernald, F.G (1984), Analysis of atmospheric lidar observations: some comments, Appl. Opt. 23,5, 652–653, DOI: 10.1364/AO.23.000652.

    Article  Google Scholar 

  • Flentje, H., B. Heese, J. Reichardt, and W. Thomas (2010), Aerosol profiling using the ceilometer network of the German Meteorological Service, Atmos. Meas. Tech. Discuss. 3,4, 3643–3673, DOI: 10.5194/amtd-3-3643-2010.

    Article  Google Scholar 

  • Frey, S., K. Poenitz, G. Teschke, and H. Wille (2010), Detection of aerosol layers with ceilometers and the recognition of the mixed layer depth. In: Proc. Int. Symp. for Advancement of Boundary Layer Remote (ISARS), 3646–3647.

  • Frioud, M., V. Mitev, R. Matthey, C.H. Häberli, H. Richner, R. Werner, and S. Vogt (2003), Elevated aerosol stratification above the Rhine Valley under strong anticyclonic conditions, Atmos. Environ. 37,13, 1785–1797, DOI: 10.1016/S1352-2310(03)00049-9.

    Article  Google Scholar 

  • Heese, B., H. Flentje, D. Althausen, A. Ansmann, and S. Frey (2010), Ceilometerlidar inter-comparision: backscatter coefficient retrieval and signal-to-noise ratio determination, Atmos. Meas. Tech. Discuss. 3,4, 3907–3924, DOI: 10.5194/amtd-3-3907-2010.

    Article  Google Scholar 

  • Heidam, N.Z., J. Christensen, P. Wahlin, and H. Skov (2004), Arctic atmospheric contaminants in NE Greenland: levels, variations, origins, transport, transformations and trends 1990–2001, Sci. Total Environ. 331,1–3, 5–28, DOI: 10.1016/j.scitotenv.2004.03.033.

    Article  Google Scholar 

  • Herber, A., L.W. Thomason, H. Gernandt, U. Leiterer, D. Nagel, K.-H. Schulz, J. Kaptur, T. Albrecht, and J. Notholt (2002), Continuous day and night aerosol optical depth observations in the Arctic between 1991 and 1999, J. Geophys. Res. 107,D10, 4097, DOI: 10.1029/2001JD000536.

    Article  Google Scholar 

  • Hillamo, R., V.-M. Kerminen, M. Aurela, T. Mäkelä, W. Maenhaut, and C. Leck (2001), Modal structure of chemical mass size distribution in the high Arctic aerosol, J. Geophys. Res. 106,D21, 27555–27571, DOI: 10.1029/2001JD001119.

    Article  Google Scholar 

  • Kardas, A.E., K.M. Markowicz, K. Stelmaszczyk, G. Karasiński, S.P. Malinowski, T. Stacewicz, L. Woeste, and C. Hochhertz (2010), Saharan aerosol sensed over Warsaw by backscatter depolarization lidar, Opt. Appl. 40,1, 219–237.

    Google Scholar 

  • Khattatov, V.U., A.E. Tyabotov, A.P. Alekseyev, A.A. Postnov, and E.A. Stulov (1997), Aircraft lidar studies of the Arctic haze and their meteorological interpretation, Atmos. Res. 44,1–2, 99–111, DOI: 10.1016/S0169-8095(97)00011-2.

    Article  Google Scholar 

  • Klett, J.D. (1985), Lidar inversion with variable backscatter/extinction ratios, Appl. Opt. 24,11, 1638–1643, DOI: 10.1364/AO.24.001638.

    Article  Google Scholar 

  • Law, K.S., and A. Stohl (2007), Arctic air pollution: Origins and impacts, Science 315,5818, 1537–1540, DOI: 10.1126/science.1137695.

    Article  Google Scholar 

  • Leck, C., and E.K. Bigg (2005a), Biogenic particles in the surface microlayer and overlaying atmosphere in the central Arctic Ocean during summer, Tellus B 57,4, 305–316, DOI: 10.1111/j.1600-0889.2005.00148.x.

    Article  Google Scholar 

  • Leck, C., and E.K. Bigg (2005b), Source and evolution of the marine aerosol — A new perspective, Geophys. Res. Lett. 32, L19803, DOI: 10.1029/2005GL023651.

    Article  Google Scholar 

  • Lim, C.-J., M.-D. Cheng, and W.H. Schroeder (2001), Transport patterns and potential sources of total gaseous mercury measured in Canadian high Arctic in 1995, Atmos. Environ. 35,6, 1141–1154, DOI: 10.1016/S1352-2310(00)00262-4.

    Article  Google Scholar 

  • Maciszewska, A.E., K.M. Markowicz, and M.L. Witek (2010), A multiyear analysis of aerosol optical thickness over Europe and Central Poland using NAAPS model simulation, Acta Geophys. 58,6, 1147–1163, 10.2478/s11600-010-0034-5.

    Article  Google Scholar 

  • Markowicz, K.M., P.J. Flatau, A.E. Kardas, J. Remiszewska, K. Stelmaszczyk, and L. Woeste (2008), Ceilometer retrieval of t he boundary layer vertical aerosol extinction structure, J. Atmos. Ocean. Technol. 25,6, 928–944, DOI: 10.1175/2007JTECHA1016.1.

    Article  Google Scholar 

  • Martucci, G., C. Milroy, and C.D. O’Dowd (2010), Detection of cloud-base height using Jenoptik CHM15K and Vaisala CL31 ceilometers, J. Atmos. Oceanic Technol. 27,2, 305–318, DOI: 10.1175/2009JTECHA1326.1

    Article  Google Scholar 

  • McKendry, I.G., D. van der Kamp, K.B. Strawbridge, A. Christen, and B. Crawford (2009), Simultaneous observations of boundary-layer aerosol layers with CL31 ceilometer and 1064/532 nm lidar, Atmos. Environ. 43,36, 5847–5852, DOI: 10.1016/j.atmosenv.2009.07.063.

    Article  Google Scholar 

  • Morys, M., F.M. Mims III, S. Hagerup, S.E. Anderson, A. Baker, J. Kia, and T. Walkup (2001), Design, calibration, and performance of MICROTOPS II handheld ozone monitor and Sun photometer, J. Geophys. Res. 106,D13, 14573–14582, DOI: 10.1029/2001JD900103.

    Article  Google Scholar 

  • Mulcahy, J.P., C.D. O’Dowd, S.G. Jennings, and D. Ceburnis (2008), Significant enhancement of aerosol optical depth in marine air under high wind conditions, Geophys. Res. Lett. 35, L16810, DOI: 10.1029/2008GL034303.

    Article  Google Scholar 

  • Münkel, C., N. Eresmaa, J. Räsänen, and A. Karppinen (2007), Retrieval of mixing height and dust concentration with lidar ceilometer, Bound. Lay. Meteorol. 124, 117–128, DOI: 10.1007/s10546-006-9103-3.

    Article  Google Scholar 

  • Myhre, C.L., C. Toledano, G. Myhre, K. Stebel, K.E. Yttri, V. Aaltonen, M. Johnsrud, M. Frioud, V. Cachorro, A. de Frutos, H. Lihavainen, J.R. Campbell, A.P. Chaikovsky, M. Shiobara, E.J. Welton, and K. Tørseth (2007), Regional aerosol optical properties and radiative impact of the extreme smoke event in the European Arctic in spring 2006, Atmos. Chem. Phys. 7,22, 5899–5915, DOI: 10.5194/acp-7-5899-2007.

    Article  Google Scholar 

  • Nagel, D., A. Herber, L.W. Thomason, and U. Leiterer (1998), Vertical distribution of the spectral aerosol optical depth in the Arctic from 1993 to 1996, J. Geophys. Res. 103,D2, 1857–1870, DOI: 10.1029/97JD02678.

    Article  Google Scholar 

  • O’Connor, E.J., A.J. Illingworth, and R.J. Hogan (2004), A technique for autocalibration of cloud lidar, J. Atmos. Oceanic Technol. 21,5, 777–786, DOI: 10.1175/1520-0426(2004)021<0777:ATFAOC>2.0.CO;2.

    Article  Google Scholar 

  • Petelski, T., and J. Piskozub (2006), Vertical coarse aerosol fluxes in the atmospheric surface layer over the North Polar Waters of the Atlantic, J. Geophys. Res. 111, C06039, DOI: 10.1029/2005JC003295.

    Article  Google Scholar 

  • Quinn, P.K., G. Shaw, E. Andrews, E.G. Dutton, T. Ruoho-Airola, and S.L. Gong (2007), Arctic haze: current trends and knowledge gaps, Tellus B 59,1, 99–114, DOI: 10.1111/j.1600-0889.2006.00238.x.

    Article  Google Scholar 

  • Randles, C.A., L.M. Russell, and V. Ramaswamy (2004), Hygroscopic and optical properties of organic sea salt aerosol and consequences for climate forcing, Geophys. Res. Lett. 31, L16108, DOI: 10.1029/2004GL020628.

    Article  Google Scholar 

  • Rodgers, C.D. (2000), Inverse Methods for Atmospheric Sounding: Theory and Practice, World Scientific Publ., Singapore, 200 pp.

    Book  Google Scholar 

  • Roy, G., S. Hayman, and W. Julian (2001), Sky analysis from CCD images: cloud cover, Lighting Res. Technol. 33,4, 211–221, DOI: 10.1177/136578280103300402.

    Article  Google Scholar 

  • Sasano, Y., E.V. Browell, and S. Ismail (1985), Error caused by using a constant extinction/backscattering ratio in the lidar solution, Appl. Opt. 24,22, 3929–3932, DOI: 10.1364/AO.24.003929.

    Article  Google Scholar 

  • Stelmaszczyk, K., M. Dell’Aglio, S. Chudzyński, T. Stacewicz, and L. Wöste (2005), Analytical function for lidar geometrical compression form-factor calculations, Appl. Opt. 44,7, 1323–1331, DOI: 10.1364/AO.44.001323.

    Article  Google Scholar 

  • Sundström, A.-M., T. Nousiainen, and T. Petäjä (2009), On the quantitative lowlevel aerosol measurements using ceilometer-type lidar, J. Atmos. Oceanic Technol. 26,11, 2340–2352, DOI: 10.1175/2009JTECHA1252.1.

    Article  Google Scholar 

  • Tomasi, C., V. Vitale, A. Lupi, C. Di Carmine, M. Campanelli, A. Herber, R. Treffeisen, R.S. Stone, E. Andrews, S. Sharma, V. Radionov, W. von Hoyningen-Huene, K. Stebel, G.H. Hansen, C.L. Myhre, C. Wehrli, V. Aaltonen, H. Lihavainen, A. Virkkula, R. Hillamo, J. Ström, C. Toledano, V.E. Cachorro, P. Ortiz, A.M. de Frutos, S. Blindheim, M. Frioud, M. Gausa, T. Zieliński, T. Petelski, and T. Yamanouchi (2007), Aerosols in polar regions: A historical overview based on optical depth and in situ observations, J. Geophys. Res. 112, D16205, DOI: 10.1029/2007JD008432.

    Article  Google Scholar 

  • Treffeisen, R., P. Tunved, J. Ström, A. Herber, J. Bareiss, A. Helbig, R.S. Stone, W. Hoyningen-Huene, R. Krejci, A. Stohl, and R. Neuber (2007), Arctic smoke — aerosol characteristics during a record smoke event in the European Arctic and its radiative impact, Atmos. Chem. Phys. 7,11, 3035–3053, DOI: 10.5194/acp-7-3035-2007.

    Article  Google Scholar 

  • Welton, E.J., and J.R. Campbell (2002), Micropulse lidar signals: Uncertainty analysis, J. Atmos. Oceanic Technol. 19,12, 2089–2094, DOI: 10.1175/1520-0426(2002)019<2089:MLSUA>2.0.CO;2.

    Article  Google Scholar 

  • Welton, E.J., K.J. Voss, P.K. Quinn, P.J. Flatau, K. Markowicz, J.R. Campbell, J.D. Spinhirne, H.R. Gordon, and J.E. Johnson (2002), Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micropulse lidars, J. Geophys. Res. 107,D19, 8019, DOI: 10.1029/2000JD000038.

    Article  Google Scholar 

  • Witek, M.L., P.J. Flatau, P.K. Quinn, and D.L. Westphal (2007), Global sea-salt modeling: Results and validation against multicampaign shipboard measurements, J. Geophys. Res. 112, D08215, DOI: 10.1029/2006JD007779.

    Article  Google Scholar 

  • Zieliński, T., and A. Zieliński (2002), Aerosol extinction and aerosol optical thickness in the atmosphere over the Baltic Sea determined with lidar, J. Aerosol Sci. 33,6, 907–921, DOI: 10.1016/S0021-8502(02)00043-5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof M. Markowicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markowicz, K.M., Zieliński, T., Blindheim, S. et al. Study of vertical structure of aerosol optical properties with sun photometers and ceilometer during the MACRON campaign in 2007. Acta Geophys. 60, 1308–1337 (2012). https://doi.org/10.2478/s11600-011-0056-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-011-0056-7

Key words

Navigation