Advertisement

Acta Geophysica

, Volume 60, Issue 5, pp 1308–1337 | Cite as

Study of vertical structure of aerosol optical properties with sun photometers and ceilometer during the MACRON campaign in 2007

  • Krzysztof M. Markowicz
  • Tymon Zieliński
  • Sandra Blindheim
  • Michael Gausa
  • Anna K. Jagodnicka
  • Aleksandra E. Kardas
  • Wojciech Kumala
  • Szymon P. Malinowski
  • Tomasz Petelski
  • Michał Posyniak
  • Tadeusz Stacewicz
Article

Abstract

This paper presents the measurements of a vertical structure of aerosol optical properties performed during the MACRON (Maritime Aerosol, Clouds and Radiation Observation in Norway) campaign, which took place in July and August 2007 at ALOMAR observatory on Andøya island (69.279°N, 16.009°E, elevation 380 m a.s.l.). The mean value of the aerosol optical thickness (AOT) at 500 nm during campaign was 0.12. Significant increase of the AOT above longtime mean value was observed on 7 and 8 August 2007 when the AOT exceeded 0.4 at 500 nm. Analyses of back trajectories show the aerosol transported from over Africa and Central Europe. The aerosol extinction coefficient obtained from the synergy of ceilometer and sun photometer observations reached 0.05–0.08 km−1 (at 1064 nm) in the dust layer. The single scattering albedo at the ALOMAR observatory decreased during the dust episode to 0.93–0.94, which indicates some absorptive aerosols in the lower PBL.

Key words

aerosol optical thickness aerosol extinction single scattering albedo remote sensing retrieval 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berkoff, T.A., E.J. Welton, J.R. Campbell, V.S. Scott, and J.D. Spinhirne (2003), Investigation of overlap correction techniques for the Micro-Pulse Lidar NETwork (MPLNET). In: Proc. Geoscience and Remote Sensing Symp. 2003, IGARSS’03, Toulouse, France, IEEE International, Vol. 7, 4395–4397, DOI: 10.1109/IGARSS.2003.1295527.Google Scholar
  2. Charlson, R.J., S.E. Schwartz, J.M. Hales, R.D. Cess, J.A. Coakley, Jr., J.E. Hansen, and D.J. Hofmann (1992), Climate forcing by anthropogenic aerosols, Science 255,5043, 423–430, DOI: 10.1126/science.255.5043.423.CrossRefGoogle Scholar
  3. Chýlek, P., and J.A. Coakley, Jr. (1974), Aerosols and climate, Science 183,4120, 75–77, DOI: 10.1126/science.183.4120.75.CrossRefGoogle Scholar
  4. Draxler, R.R., and G.D. Rolph (2010), HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website, NOAA Air Resources Laboratory, Silver Spring, MD, USA (http://ready.arl.noaa.gov/HYSPLIT.php).Google Scholar
  5. Engvall, A.-C., R. Krejci, J. Ström, R. Treffeisen, R. Scheele, O. Hermansen, and J. Paatero (2008), Changes in aerosol properties during spring-summer period in the Arctic troposphere, Atmos. Chem. Phys. 8,3, 445–462, DOI: 10.5194/acp-8-445-2008.CrossRefGoogle Scholar
  6. Eresmaa, N., A. Karppinen, S.M. Joffre, J. Räsänen, and H. Talvitie (2006), Mixing height determination by ceilometer, Atmos. Chem. Phys. 6, 1485–1493, DOI: 10.5194/acp-6-1485-2006.CrossRefGoogle Scholar
  7. Fernald, F.G (1984), Analysis of atmospheric lidar observations: some comments, Appl. Opt. 23,5, 652–653, DOI: 10.1364/AO.23.000652.CrossRefGoogle Scholar
  8. Flentje, H., B. Heese, J. Reichardt, and W. Thomas (2010), Aerosol profiling using the ceilometer network of the German Meteorological Service, Atmos. Meas. Tech. Discuss. 3,4, 3643–3673, DOI: 10.5194/amtd-3-3643-2010.CrossRefGoogle Scholar
  9. Frey, S., K. Poenitz, G. Teschke, and H. Wille (2010), Detection of aerosol layers with ceilometers and the recognition of the mixed layer depth. In: Proc. Int. Symp. for Advancement of Boundary Layer Remote (ISARS), 3646–3647.Google Scholar
  10. Frioud, M., V. Mitev, R. Matthey, C.H. Häberli, H. Richner, R. Werner, and S. Vogt (2003), Elevated aerosol stratification above the Rhine Valley under strong anticyclonic conditions, Atmos. Environ. 37,13, 1785–1797, DOI: 10.1016/S1352-2310(03)00049-9.CrossRefGoogle Scholar
  11. Heese, B., H. Flentje, D. Althausen, A. Ansmann, and S. Frey (2010), Ceilometerlidar inter-comparision: backscatter coefficient retrieval and signal-to-noise ratio determination, Atmos. Meas. Tech. Discuss. 3,4, 3907–3924, DOI: 10.5194/amtd-3-3907-2010.CrossRefGoogle Scholar
  12. Heidam, N.Z., J. Christensen, P. Wahlin, and H. Skov (2004), Arctic atmospheric contaminants in NE Greenland: levels, variations, origins, transport, transformations and trends 1990–2001, Sci. Total Environ. 331,1–3, 5–28, DOI: 10.1016/j.scitotenv.2004.03.033.CrossRefGoogle Scholar
  13. Herber, A., L.W. Thomason, H. Gernandt, U. Leiterer, D. Nagel, K.-H. Schulz, J. Kaptur, T. Albrecht, and J. Notholt (2002), Continuous day and night aerosol optical depth observations in the Arctic between 1991 and 1999, J. Geophys. Res. 107,D10, 4097, DOI: 10.1029/2001JD000536.CrossRefGoogle Scholar
  14. Hillamo, R., V.-M. Kerminen, M. Aurela, T. Mäkelä, W. Maenhaut, and C. Leck (2001), Modal structure of chemical mass size distribution in the high Arctic aerosol, J. Geophys. Res. 106,D21, 27555–27571, DOI: 10.1029/2001JD001119.CrossRefGoogle Scholar
  15. Kardas, A.E., K.M. Markowicz, K. Stelmaszczyk, G. Karasiński, S.P. Malinowski, T. Stacewicz, L. Woeste, and C. Hochhertz (2010), Saharan aerosol sensed over Warsaw by backscatter depolarization lidar, Opt. Appl. 40,1, 219–237.Google Scholar
  16. Khattatov, V.U., A.E. Tyabotov, A.P. Alekseyev, A.A. Postnov, and E.A. Stulov (1997), Aircraft lidar studies of the Arctic haze and their meteorological interpretation, Atmos. Res. 44,1–2, 99–111, DOI: 10.1016/S0169-8095(97)00011-2.CrossRefGoogle Scholar
  17. Klett, J.D. (1985), Lidar inversion with variable backscatter/extinction ratios, Appl. Opt. 24,11, 1638–1643, DOI: 10.1364/AO.24.001638.CrossRefGoogle Scholar
  18. Law, K.S., and A. Stohl (2007), Arctic air pollution: Origins and impacts, Science 315,5818, 1537–1540, DOI: 10.1126/science.1137695.CrossRefGoogle Scholar
  19. Leck, C., and E.K. Bigg (2005a), Biogenic particles in the surface microlayer and overlaying atmosphere in the central Arctic Ocean during summer, Tellus B 57,4, 305–316, DOI: 10.1111/j.1600-0889.2005.00148.x.CrossRefGoogle Scholar
  20. Leck, C., and E.K. Bigg (2005b), Source and evolution of the marine aerosol — A new perspective, Geophys. Res. Lett. 32, L19803, DOI: 10.1029/2005GL023651.CrossRefGoogle Scholar
  21. Lim, C.-J., M.-D. Cheng, and W.H. Schroeder (2001), Transport patterns and potential sources of total gaseous mercury measured in Canadian high Arctic in 1995, Atmos. Environ. 35,6, 1141–1154, DOI: 10.1016/S1352-2310(00)00262-4.CrossRefGoogle Scholar
  22. Maciszewska, A.E., K.M. Markowicz, and M.L. Witek (2010), A multiyear analysis of aerosol optical thickness over Europe and Central Poland using NAAPS model simulation, Acta Geophys. 58,6, 1147–1163, 10.2478/s11600-010-0034-5.CrossRefGoogle Scholar
  23. Markowicz, K.M., P.J. Flatau, A.E. Kardas, J. Remiszewska, K. Stelmaszczyk, and L. Woeste (2008), Ceilometer retrieval of t he boundary layer vertical aerosol extinction structure, J. Atmos. Ocean. Technol. 25,6, 928–944, DOI: 10.1175/2007JTECHA1016.1.CrossRefGoogle Scholar
  24. Martucci, G., C. Milroy, and C.D. O’Dowd (2010), Detection of cloud-base height using Jenoptik CHM15K and Vaisala CL31 ceilometers, J. Atmos. Oceanic Technol. 27,2, 305–318, DOI: 10.1175/2009JTECHA1326.1CrossRefGoogle Scholar
  25. McKendry, I.G., D. van der Kamp, K.B. Strawbridge, A. Christen, and B. Crawford (2009), Simultaneous observations of boundary-layer aerosol layers with CL31 ceilometer and 1064/532 nm lidar, Atmos. Environ. 43,36, 5847–5852, DOI: 10.1016/j.atmosenv.2009.07.063.CrossRefGoogle Scholar
  26. Morys, M., F.M. Mims III, S. Hagerup, S.E. Anderson, A. Baker, J. Kia, and T. Walkup (2001), Design, calibration, and performance of MICROTOPS II handheld ozone monitor and Sun photometer, J. Geophys. Res. 106,D13, 14573–14582, DOI: 10.1029/2001JD900103.CrossRefGoogle Scholar
  27. Mulcahy, J.P., C.D. O’Dowd, S.G. Jennings, and D. Ceburnis (2008), Significant enhancement of aerosol optical depth in marine air under high wind conditions, Geophys. Res. Lett. 35, L16810, DOI: 10.1029/2008GL034303.CrossRefGoogle Scholar
  28. Münkel, C., N. Eresmaa, J. Räsänen, and A. Karppinen (2007), Retrieval of mixing height and dust concentration with lidar ceilometer, Bound. Lay. Meteorol. 124, 117–128, DOI: 10.1007/s10546-006-9103-3.CrossRefGoogle Scholar
  29. Myhre, C.L., C. Toledano, G. Myhre, K. Stebel, K.E. Yttri, V. Aaltonen, M. Johnsrud, M. Frioud, V. Cachorro, A. de Frutos, H. Lihavainen, J.R. Campbell, A.P. Chaikovsky, M. Shiobara, E.J. Welton, and K. Tørseth (2007), Regional aerosol optical properties and radiative impact of the extreme smoke event in the European Arctic in spring 2006, Atmos. Chem. Phys. 7,22, 5899–5915, DOI: 10.5194/acp-7-5899-2007.CrossRefGoogle Scholar
  30. Nagel, D., A. Herber, L.W. Thomason, and U. Leiterer (1998), Vertical distribution of the spectral aerosol optical depth in the Arctic from 1993 to 1996, J. Geophys. Res. 103,D2, 1857–1870, DOI: 10.1029/97JD02678.CrossRefGoogle Scholar
  31. O’Connor, E.J., A.J. Illingworth, and R.J. Hogan (2004), A technique for autocalibration of cloud lidar, J. Atmos. Oceanic Technol. 21,5, 777–786, DOI: 10.1175/1520-0426(2004)021<0777:ATFAOC>2.0.CO;2.CrossRefGoogle Scholar
  32. Petelski, T., and J. Piskozub (2006), Vertical coarse aerosol fluxes in the atmospheric surface layer over the North Polar Waters of the Atlantic, J. Geophys. Res. 111, C06039, DOI: 10.1029/2005JC003295.CrossRefGoogle Scholar
  33. Quinn, P.K., G. Shaw, E. Andrews, E.G. Dutton, T. Ruoho-Airola, and S.L. Gong (2007), Arctic haze: current trends and knowledge gaps, Tellus B 59,1, 99–114, DOI: 10.1111/j.1600-0889.2006.00238.x.CrossRefGoogle Scholar
  34. Randles, C.A., L.M. Russell, and V. Ramaswamy (2004), Hygroscopic and optical properties of organic sea salt aerosol and consequences for climate forcing, Geophys. Res. Lett. 31, L16108, DOI: 10.1029/2004GL020628.CrossRefGoogle Scholar
  35. Rodgers, C.D. (2000), Inverse Methods for Atmospheric Sounding: Theory and Practice, World Scientific Publ., Singapore, 200 pp.CrossRefGoogle Scholar
  36. Roy, G., S. Hayman, and W. Julian (2001), Sky analysis from CCD images: cloud cover, Lighting Res. Technol. 33,4, 211–221, DOI: 10.1177/136578280103300402.CrossRefGoogle Scholar
  37. Sasano, Y., E.V. Browell, and S. Ismail (1985), Error caused by using a constant extinction/backscattering ratio in the lidar solution, Appl. Opt. 24,22, 3929–3932, DOI: 10.1364/AO.24.003929.CrossRefGoogle Scholar
  38. Stelmaszczyk, K., M. Dell’Aglio, S. Chudzyński, T. Stacewicz, and L. Wöste (2005), Analytical function for lidar geometrical compression form-factor calculations, Appl. Opt. 44,7, 1323–1331, DOI: 10.1364/AO.44.001323.CrossRefGoogle Scholar
  39. Sundström, A.-M., T. Nousiainen, and T. Petäjä (2009), On the quantitative lowlevel aerosol measurements using ceilometer-type lidar, J. Atmos. Oceanic Technol. 26,11, 2340–2352, DOI: 10.1175/2009JTECHA1252.1.CrossRefGoogle Scholar
  40. Tomasi, C., V. Vitale, A. Lupi, C. Di Carmine, M. Campanelli, A. Herber, R. Treffeisen, R.S. Stone, E. Andrews, S. Sharma, V. Radionov, W. von Hoyningen-Huene, K. Stebel, G.H. Hansen, C.L. Myhre, C. Wehrli, V. Aaltonen, H. Lihavainen, A. Virkkula, R. Hillamo, J. Ström, C. Toledano, V.E. Cachorro, P. Ortiz, A.M. de Frutos, S. Blindheim, M. Frioud, M. Gausa, T. Zieliński, T. Petelski, and T. Yamanouchi (2007), Aerosols in polar regions: A historical overview based on optical depth and in situ observations, J. Geophys. Res. 112, D16205, DOI: 10.1029/2007JD008432.CrossRefGoogle Scholar
  41. Treffeisen, R., P. Tunved, J. Ström, A. Herber, J. Bareiss, A. Helbig, R.S. Stone, W. Hoyningen-Huene, R. Krejci, A. Stohl, and R. Neuber (2007), Arctic smoke — aerosol characteristics during a record smoke event in the European Arctic and its radiative impact, Atmos. Chem. Phys. 7,11, 3035–3053, DOI: 10.5194/acp-7-3035-2007.CrossRefGoogle Scholar
  42. Welton, E.J., and J.R. Campbell (2002), Micropulse lidar signals: Uncertainty analysis, J. Atmos. Oceanic Technol. 19,12, 2089–2094, DOI: 10.1175/1520-0426(2002)019<2089:MLSUA>2.0.CO;2.CrossRefGoogle Scholar
  43. Welton, E.J., K.J. Voss, P.K. Quinn, P.J. Flatau, K. Markowicz, J.R. Campbell, J.D. Spinhirne, H.R. Gordon, and J.E. Johnson (2002), Measurements of aerosol vertical profiles and optical properties during INDOEX 1999 using micropulse lidars, J. Geophys. Res. 107,D19, 8019, DOI: 10.1029/2000JD000038.CrossRefGoogle Scholar
  44. Witek, M.L., P.J. Flatau, P.K. Quinn, and D.L. Westphal (2007), Global sea-salt modeling: Results and validation against multicampaign shipboard measurements, J. Geophys. Res. 112, D08215, DOI: 10.1029/2006JD007779.CrossRefGoogle Scholar
  45. Zieliński, T., and A. Zieliński (2002), Aerosol extinction and aerosol optical thickness in the atmosphere over the Baltic Sea determined with lidar, J. Aerosol Sci. 33,6, 907–921, DOI: 10.1016/S0021-8502(02)00043-5.CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2011

Authors and Affiliations

  • Krzysztof M. Markowicz
    • 1
  • Tymon Zieliński
    • 2
  • Sandra Blindheim
    • 3
  • Michael Gausa
    • 3
  • Anna K. Jagodnicka
    • 4
  • Aleksandra E. Kardas
    • 1
  • Wojciech Kumala
    • 1
  • Szymon P. Malinowski
    • 1
  • Tomasz Petelski
    • 2
  • Michał Posyniak
    • 1
  • Tadeusz Stacewicz
    • 4
  1. 1.Institute of Geophysics, Faculty of PhysicsUniversity of WarsawWarsawPoland
  2. 2.Institute of OceanologyPolish Academy of SciencesSopotPoland
  3. 3.Arctic Lidar Observatory for Middle Atmosphere ResearchAndenesNorway
  4. 4.Institute of Experimental Physics, Faculty of PhysicsUniversity of WarsawWarsawPoland

Personalised recommendations