Skip to main content
Log in

Differential geometric approach to the stress aspect of a fault: Airy stress function surface and curvatures

  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

We considered the two-dimensional stress aspect of a fault from the viewpoint of differential geometry. For this analysis, we concentrated on the curvatures of the Airy stress function surface. We found the following: (i) Because the principal stresses are the principal curvatures of the stress function surface, the first and the second invariant quantities in the elasticity correspond to invariant quantities in differential geometry; specifically, the mean and Gaussian curvatures, respectively; (ii) Coulomb’s failure criterion shows that the coefficient of friction is the physical expression of the geometric energy of the stress function surface; (iii) The differential geometric expression of the Goursat formula shows that the fault (dislocation) type (strike-slip or dip-slip) corresponds to the stress function surface type (elliptic or hyperbolic). Finally, we discuss the need to use non-biharmonic stress tensor theory to describe the stress aspect of multi-faults or an earthquake source zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Mandl, G. (1988), Mechanics of Tectonic Faulting: Models and Basic Concepts, Elsevier, Amsterdam.

    Google Scholar 

  • Mogi, K. (1967), Effect of the intermediate principal stress on rock failure, J. Geophys. Res. 72,20, 5117–5131, DOI: 10.1029/JZ072i020p05117.

    Article  Google Scholar 

  • Nagahama, H., and R. Teisseyre (2008), Continuum theory of defects: Advanced approaches. In: R. Teisseyre, H. Nagahama, and E. Majewski (eds.), Physics of Assymetric Continuum: Extreme and Fracture Processes, Springer-Verlag, Berlin, 220–248.

    Google Scholar 

  • Park, R.G. (1997), Foundation of Structural Geology, Chapman and Hall, New York.

    Google Scholar 

  • Parry, R.H.G. (2004), Mohr Circles, Stress Paths and Geotechnics, Taylor and Francis, London, DOI: 10.4324/9780203428283.

    Book  Google Scholar 

  • Pottmann, H., P. Grohs, and N.J. Mitra (2009), Laguerre minimal surfaces, isotropic geometry and linear elasticity, Adv. Comput. Math. 31,4, 391–419, DOI: 10.1007/s10444-008-9076-5.

    Article  Google Scholar 

  • Teisseyre, R. (1973), Earthquake processes in a micromorphic continuum, Pure Appl. Geophys. 102,1, 15–28, DOI: 10.1007/BF00876588.

    Article  Google Scholar 

  • Teisseyre, R. (2009), Tutorial on new developments in the physics of rotational motions, Bull. Seismol. Soc. Am. 99,2B, 1028–1039, DOI: 10.1785/0120080089.

    Article  Google Scholar 

  • Teisseyre, R. (2010), Fluid theory with asymmetric molecular stresses: Difference between vorticity and spin equations, Acta Geophys. 58,6, 1056–1071, DOI: 10.2478/s11600-010-0029-2.

    Article  Google Scholar 

  • Teisseyre, R., and M. Górski (2009), Transport in fracture processes: Fragmentation and slip, Acta Geophys. 57,3, 583–599, DOI: 10.2478/s11600-009-0020-y.

    Article  Google Scholar 

  • Teisseyre, R., and M. Górski (2011), Earthquake fragmentation and slip processes: spin and shear-twist wave mosaic, Acta Geophys. 59,3, 453–469, DOI: 10.2478/s11600-011-0001-9.

    Article  Google Scholar 

  • Teisseyre, R., and M. Shimbo (1995), Differential geometry methods in deformation problems. In: R. Teisseyre (ed.), Theory of Earthquake Premonitory and Fracture Processes, Polish Scientific Publisher PWN, 503–544.

  • Twiss, R.J., and E.M. Moores (1992), Structural Geology, W.H. Freeman, New York.

    Google Scholar 

  • Willmore, T.J. (1996), Riemannian Geometry, Oxford University Press, New York.

    Google Scholar 

  • Yamasaki, K. (2005), Tensor analysis of dislocation-stress relationship based on the extended deformation gradient, Acta Geophys. Pol. 53,1, 1–12.

    Google Scholar 

  • Yamasaki, K. (2009), A quantum particle motion and thermodynamics in faultsdefects field: Path integral formulation based on extended deformation gradient tensor, Acta Geophys. 57,3, 567–582, DOI: 10.2478/s11600-009-0016-7.

    Article  Google Scholar 

  • Yamasaki, K., and H. Nagahama (1999), Hodge duality and continuum theory of defects, J. Phys. A Math. Gen. 32,44, L475–L481, DOI: 10.1088/0305-4470/32/44/103.

    Article  Google Scholar 

  • Yamasaki, K., and H. Nagahama (2002), A deformed medium including a defect field and differential forms, J. Phys. A Math. Gen. 35,16, 3767–3778, DOI: 10.1088/0305-4470/35/16/315.

    Article  Google Scholar 

  • Yamasaki, K., and H. Nagahama (2008), Energy integral in fracture mechanics (J-integral) and Gauss-Bonnet theorem, J. Appl. Math. Mech. 88,6, 515–520, DOI: 10.1002/zamm.200700140.

    Google Scholar 

  • Yamasaki, K., T. Yajima, and T. Iwayama (2011), Differential geometric structures of stream functions: incompressible two-dimensional flow and curvatures, J. Phys. A Math. Theor. 44,15, 155501–155521, DOI: 10.1088/1751-8113/44/15/155501.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhito Yamasaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamasaki, K., Yajima, T. Differential geometric approach to the stress aspect of a fault: Airy stress function surface and curvatures. Acta Geophys. 60, 4–23 (2012). https://doi.org/10.2478/s11600-011-0055-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-011-0055-8

Key words

Navigation