Acta Geophysica

, Volume 60, Issue 1, pp 76–91 | Cite as

S-velocity structure beneath the Bohemian Massif from Monte Carlo inversion of seismic receiver function

  • Jacek TrojanowskiEmail author
  • Monika Wilde-Piórko


The paper contains an analysis of S-velocity distribution in the crust and upper mantle beneath the Bohemian Massif, which is the second biggest Variscan outcrop in Europe. It occupies mainly the west part of Czech Republic and also part of south-west Poland and south-east Germany. We use data from 10 permanent stations set in the region. Some previous papers relate to the same scope but use linear methods to inverse receiver function. Our new approach involves Monte Carlo techniques for inversion procedure, which is more convenient and robust for such a non-linear task. The result of Monte Carlo inversion is compared with the previously achieved one. The obtained Moho depths vary from 29 km in the north-west part of the Bohemian Massif to 38 km in the south and south-east and are consistent with other papers. Some discrepancies occur in the middle and upper crust.

Key words

receiver function inversion Monte Carlo S-velocity crust Bohemian Massif neighbourhood algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brückl, E., T. Bodoky, E. Hegedüs, P. Hrubcová, A. Gosar, M. Grad, A. Guterch, Z. Hajnal, G.R. Keller, A. Špičák, F. Sumanovac, H. Thybo, F. Weber, and ALP 2002 Working Group (2003), ALP 2002 seismic experiment, Stud. Geophys. Geod. 47,3, 671–679, DOI: 10.1023/A:1024780022139.CrossRefGoogle Scholar
  2. Grad, M., A. Špičák, G.R. Keller, A. Guterch, M. Brož, E. Hegedüs, and SUDETES 2003 Working Group (2003), SUDETES 2003 seismic experiment, Stud. Geophys. Geod. 47,3, 681–689, DOI: 10.1023/A:1024732206210.CrossRefGoogle Scholar
  3. Guterch, A., M. Grad, H. Thybo, G.R. Keller, and POLONAISE’97 Working Group (1999), POLONAISE’97 — An international seismic experiment between Precambrian and Variscan Europe in Poland, Tectonophysics 314,1–3, 101–121, DOI: 10.1016/S0040-1951(99)00239-5.CrossRefGoogle Scholar
  4. Guterch, A., M. Grad, G.R. Keller, K. Posgay, J. Vozár, A. Špičák, E. Brückl, Z. Hajnal, H. Thybo, O. Selvi, and CELEBRATION 2000 Experiment Team (2003), CELEBRATION 2000 seismic experiment, Stud. Geophys. Geod. 47,3, 659–669, DOI: 10.1023/A:1024728005301.CrossRefGoogle Scholar
  5. Hrubcová, P., and W.H. Geissler (2009), The crust-mantle transition and the Moho beneath the Vogtland/West Bohemian region in the light of different seismic methods, Stud. Geophys. Geod. 53,3, 275–294, DOI: 10.1007/s11200-009-0018-6.CrossRefGoogle Scholar
  6. Hrubcová, P., P. Środa, M. Grad, W.H. Geissler, A. Guterch, J. Vozár, E. Hegedűs, and SUDETES 2003 Working Group (2010), From the Variscan to the Alpine Orogeny: crustal structure of the Bohemian Massif and the Western Carpathians in the light of the SUDETES 2003 seismic data, Geophys. J. Int. 183,2, 611–633, DOI: 10.1111/j.1365-246X.2010.04766.x.CrossRefGoogle Scholar
  7. Metropolis, N., and S. Ulam (1949), The Monte Carlo method, J. Am. Stat. Assoc. 44,247, 335–341, DOI: 10.2307/2280232.CrossRefGoogle Scholar
  8. Mosegaard, K., and M. Sambridge (2002), Monte Carlo analysis of inverse problems, Inverse Probl. 18,3, R29–R54, DOI: 10.1088/0266-5611/18/3/201.CrossRefGoogle Scholar
  9. Růžek, B., P. Hrubcová, M. Novotný, A. Špičák, and O. Karousová (2007), Inversion of travel times obtained during active seismic refraction experiments CELEBRATION 2000, ALP 2002 and SUDETES 2003, Stud. Geophys. Geod. 51,1, 141–164, DOI: 10.1007/s11200-007-0007-6.CrossRefGoogle Scholar
  10. Sambridge, M. (1999a), Geophysical inversion with a neighbourhood algorithm — I. Searching a parameter space, Geophys. J. Int. 138,2, 479–494, DOI:10.1046/j.1365-246X.1999.00876.x.CrossRefGoogle Scholar
  11. Sambridge, M. (1999b), Geophysical inversion with a neighbourhood algorithm — II. Appraising the ensemble, Geophys. J. Int. 138,3, 727–746, DOI: 10.1046/j.1365-246x.1999.00900.x.CrossRefGoogle Scholar
  12. Sambridge, M., and K. Mosegaard (2002), Monte Carlo methods in geophysical inverse problems, Rev. Geophys. 40,3, 1009, DOI: 10.1029/2000RG000089.CrossRefGoogle Scholar
  13. Wilde-Piórko, M., J. Saul, and M. Grad (2005), Differences in the crustal and uppermost mantle structure of the Bohemian Massif from teleseismic receiver functions, Stud. Geophys. Geod. 49,1, 85–107, DOI: 10.1007/ s11200-005-1627-3.CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2011

Authors and Affiliations

  1. 1.Institute of GeophysicsPolish Academy of SciencesWarszawaPoland
  2. 2.Institute of Geophysics, Faculty of PhysicsUniversity of WarsawWarszawaPoland

Personalised recommendations