Acta Geophysica

, 59:1184 | Cite as

Macroscopic impacts of cloud and precipitation processes in shallow convection

  • Wojciech W. GrabowskiEmail author
  • Joanna Slawinska
  • Hanna Pawlowska
  • Andrzej A. Wyszogrodzki


This paper presents application of the EULAG model combined with a sophisticated double-moment warm-rain microphysics scheme to the model intercomparison case based on RICO (Rain in Cumulus over Ocean) field observations. As the simulations progress, the cloud field gradually deepens and a relatively sharp temperature and moisture inversions develop in the lower troposphere. Two contrasting aerosol environments are considered, referred to as pristine and polluted, together with two contrasting subgridscale mixing scenarios, the homogeneous and the extremely inhomogeneous mixing. Pristine and polluted environments feature mean cloud droplet concentrations around 40 and 150 mg−1, respectively, and large differences in the rain characteristics. Various measures are used to contrast evolution of macroscopic cloud field characteristics, such as the mean cloud fraction, the mean cloud width, or the height of the center of mass of the cloud field, among others. Macroscopic characteristics appear similar regardless of the aerosol characteristics or the homogeneity of the subgrid-scale mixing.

Key words

shallow convection cloud microphysics CNN activation homogeneity of subgrid-scale mixing 


  1. Albrecht, B.A. (1989), Aerosols, cloud microphysics, and fractional cloudiness, Science 245,4923, 1227–1230, DOI: 10.1126/science.245.4923.1227.CrossRefGoogle Scholar
  2. Arabas, S., H. Pawlowska, and W.W. Grabowski (2009), Effective radius and droplet spectral width from in-situ aircraft observations in trade-wind cumuli during RICO, Geophys. Res. Lett. 36, L11803, DOI: 10.1029/2009GL038257.CrossRefGoogle Scholar
  3. Bony, S., and J.-L. Dufresne (2005), Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models, Geophys. Res. Lett. 32, L20806, DOI: 10.1029/2005GL023851.CrossRefGoogle Scholar
  4. Brenguier, J.-L., and W.W. Grabowski (1993), Cumulus entrainment and cloud droplet spectra: A numerical model within a two-dimensional dynamical framework, J. Atmos. Sci. 50,1, 120–136, DOI: 10.1175/1520-0469(1993)050〈0120:CEACDS〉2.0.CO;2.CrossRefGoogle Scholar
  5. Chosson, F., J.-L. Brenguier, and M. Schröder (2004), Radiative impact of mixingprocesses in boundary layer clouds. In: Proc. 14 Int. Conf. on Clouds and Precipitation, Bologna, Italy, International Association of Meteorology and Atmospheric Sciences, 371–374.Google Scholar
  6. Chosson, F., J.-L. Brenguier, and L. Schüller (2007), Entrainment-mixing and radiative transfer simulation in boundary-layer clouds, J. Atmos. Sci. 64,7, 2670–2682, DOI: 10.1175/JAS3975.1.CrossRefGoogle Scholar
  7. Gerber, H.E., G.M. Frick, J.B. Jensen, and J.G. Hudson (2008), Entrainment, mixing, and microphysics in trade-wind cumulus, J. Meteor. Soc. Japan 86A, 87–106, DOI: 10.2151/jmsj.86A.87.CrossRefGoogle Scholar
  8. Grabowski, W.W. (2006), Indirect impact of atmospheric aerosols in idealized simulations of convective-radiative quasi-equilibrium, J. Climate 19,18, 4664–4682, DOI: 10.1175/JCLI3857.1.CrossRefGoogle Scholar
  9. Grabowski, W.W., and T.L. Clark (1991), Cloud-environment interface instability: Rising thermal calculations in two spatial dimensions, J. Atmos. Sci. 48,4, 527–546, DOI: 10.1175/1520-0469(1991)048〈0527:CIIRTC〉2.0.CO;2.CrossRefGoogle Scholar
  10. Grabowski, W.W., and T.L. Clark (1993), Cloud-environment interface instability, Part II: Extension to three spatial dimensions, J. Atmos. Sci. 50,4, 555–573, DOI: 10.1175/1520-0469(1993)050〈0555:CEIIPI〉2.0.CO;2.CrossRefGoogle Scholar
  11. Grabowski, W.W., and P.K. Smolarkiewicz (1990), Monotone finite difference approximations to the advection-condensation problem, Mon. Weather Rev. 118,10, 2082–2098, DOI: 10.1175/1520-0493(1990)118〈2082: MFDATT〉2.0.CO;2.CrossRefGoogle Scholar
  12. Grabowski, W.W., and P.K. Smolarkiewicz (1996), Two-time-level semi-Lagrangian modeling of precipitating clouds, Mon. Weather Rev. 124,3, 487–497, DOI: 10.1175/1520-0493(1996)124〈0487:TTLSLM〉2.0.CO;2.CrossRefGoogle Scholar
  13. Grabowski, W.W., X. Wu, M.W. Moncrieff, and W.D. Hall (1998), Cloud-resolving modeling of cloud systems during Phase III of GATE. Part II: Effects of resolution and the third spatial dimension, J. Atmos. Sci. 55,21, 3264–3282, DOI: 10.1175/1520-0469(1998)055〈3264:CRMOCS〉2.0.CO;2.CrossRefGoogle Scholar
  14. Grabowski, W.W., P. Bechtold, A. Cheng, R. Forbes, C. Halliwell, M. Khairoutdinov, S. Lang, T. Nasuno, J. Petch, W.-K. Tao, R. Wong, X. Wu, and K.-M. Xu (2006), Daytime convective development over land: A model intercomparison based on LBA observations, Quart. J. Roy. Met. Soc. 132,615, 317–344, DOI: 10.1256/qj.04.147.CrossRefGoogle Scholar
  15. Koren, I., O. Altaratz, G. Feingold, Z. Levin, and T. Reisin (2009), Cloud’s Center of Gravity — a compact approach to analyze convective cloud development, Atmos. Chem. Phys. 9,1, 155–161, DOI: 10.5194/acp-9-155-2009.CrossRefGoogle Scholar
  16. Margolin, L.G., P.K. Smolarkiewicz, and Z. Sorbjan (1999), Large-eddy simulations of convective boundary layers using nonoscillatory differencing, Physica D 133,1–4, 390–397, DOI: 10.1016/S0167-2789(99)00083-4.CrossRefGoogle Scholar
  17. Morrison, H., and W.W. Grabowski (2007), Comparison of bulk and bin warm-rain microphysics models using a kinematic framework, J. Atmos. Sci. 64,8, 2839–2861, DOI: 10.1175/JAS3980.CrossRefGoogle Scholar
  18. Morrison, H., and W.W. Grabowski (2008), Modeling supersaturation and subgridscale mixing with two-moment bulk warm microphysics, J. Atmos. Sci. 65,3, 792–812, DOI: 10.1175/2007JAS2374.1.CrossRefGoogle Scholar
  19. Pincus, R., and M.B. Baker (1994), Effect of precipitation on the albedo susceptibility of clouds in the marine boundary layer, Nature 372, 250–252, DOI: 10.1038/372250a0.CrossRefGoogle Scholar
  20. Prusa, J.M., P.K. Smolarkiewicz, and A.A. Wyszogrodzki (2008), EULAG, a computational model for multiscale flows, Comput. Fluids 37,9, 1193–1207, DOI: 10.1016/j.compfluid.2007.12.001.CrossRefGoogle Scholar
  21. Siebesma, A.P., C.S. Bretherton, A. Brown, A. Chlond, J. Cuxart, P.G. Duynkerke, H. Jiang, M. Khairoutdinov, D. Lewellen, C.-H. Moeng, E. Sanchez, B. Stevens, and D.E. Stevens (2003), A large eddy simulation intercomparison study of shallow cumulus convection, J. Atmos. Sci. 60,10, 1201–1219, DOI: 10.1175/1520-0469(2003)60〈1201:ALESIS〉2.0.CO;2.CrossRefGoogle Scholar
  22. Slawinska, J., W.W. Grabowski, H. Pawlowska, and A.A. Wyszogrodzki (2008), Optical properties of shallow convective clouds diagnosed from a bulk-microphysics large-eddy simulation, J. Climate 21,7, 1639–1647, DOI: 10.1175/2007JCLI1820.1.CrossRefGoogle Scholar
  23. Slawinska, J., W.W. Grabowski, H. Pawlowska, and H. Morrison (2011), Droplet activation and mixing in large-eddy simulation of a shallow cumulus field, J. Atmos. Sci., DOI: 10.1175/JAS-D-11-054.1Google Scholar
  24. Smolarkiewicz, P.K., and L.G. Margolin (1997), On forward-in-time differencing for fluids: An Eulerian/semi-Lagrangian nonhydrostatic model for stratified flows, Atmos. Ocean Sp. 35,1, 127–152.CrossRefGoogle Scholar
  25. Stevens, B. (2007), On the growth of layers of nonprecipitating cumulus convection, J. Atmos. Sci. 64,8, 2916–2931, DOI: 10.1175/JAS3983.1.CrossRefGoogle Scholar
  26. Stevens, B., and A. Seifert (2008), Understanding macrophysical outcomes of microphysical choices in simulations of shallow cumulus convection, J. Meteor. Soc. Japan 86A, 143–162, DOI: 10.2151/jmsj.86A.143.CrossRefGoogle Scholar
  27. Stevens, B., A.S. Ackerman, B.A. Albrecht, A.R. Brown, A. Chlond, J. Cuxart, P.G. Duynkerke, D.C. Lewellen, M.K. Macvean, R.A.J. Neggers, E. Sanchez, A.P. Siebesma, and D.E. Stevens (2001), Simulations of trade wind cumuli under a strong inversion, J. Atmos. Sci. 58,14, 1870–1891, DOI: 10.1175/1520-0469(2001)058〈1870:SOTWCU〉2.0.CO;2.CrossRefGoogle Scholar
  28. Twomey, S. (1974), Pollution and the planetary albedo, Atmos. Environ. 8,12, 1251–1256, DOI: 10.1016/0004-6981(74)90004-3.CrossRefGoogle Scholar
  29. Twomey, S. (1977), The influence of pollution on the shortwave albedo of clouds, J. Atmos. Sci. 34,7, 1149–1152, DOI: 10.1175/1520-0469(1977)034〈1149: TIOPOT〉2.0.CO;2.CrossRefGoogle Scholar
  30. van Zanten, M.C., B. Stevens, L. Nuijens, A.P. Siebesma, A. Ackerman, F. Burnet, A. Cheng, F. Couvreux, H. Jiang, M. Khairoutdinov, Y. Kogan, D.C. Lewellen, D. Mechem, K. Nakamura, A. Noda, B.J. Shipway, J. Slawinska, S. Wang, and A. Wyszogrodzki (2011), Controls on precipitation and cloudiness in simulations of trade-wind cumulus as observed during RICO, J. Adv. Model. Earth Syst. 3, M06001, DOI: 10.1029/2011MS000056.CrossRefGoogle Scholar
  31. Warner, J. (1955), The water content of cumuliform cloud, Tellus 7,4, 449–457, DOI: 10.1111/j.2153-3490.1955.tb01183.x.CrossRefGoogle Scholar
  32. Warner, J. (1968), Areduction in rainfall associated with smoke from sugar-cane fires — An inadvertent weather modification?, J. Appl. Meteor. 7,2, 247–251, DOI: 10.1175/1520-0450(1968)007〈0247:ARIRAW〉2.0.CO;2.CrossRefGoogle Scholar
  33. Xue, H., and G. Feingold (2006), Large-eddy simulations of trade wind cumuli: Investigation of aerosol indirect effects, J. Atmos. Sci. 63,6, 1605–1622, DOI: 10.1175/JAS3706.1.CrossRefGoogle Scholar
  34. Zhao, M., and P.H. Austin (2005a), Life cycle of numerically simulated shallow cumulus clouds. Part I: Transport, J. Atmos. Sci. 62,5, 1269–1290, DOI: 10.1175/JAS3414.1.CrossRefGoogle Scholar
  35. Zhao, M., and P.H. Austin (2005b), Life cycle of numerically simulated shallow cumulus clouds. Part II: Mixing dynamics, J. Atmos. Sci. 62,5, 1291–1310, DOI: 10.1175/JAS3415.1.CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Wien 2011

Authors and Affiliations

  • Wojciech W. Grabowski
    • 1
    Email author
  • Joanna Slawinska
    • 2
  • Hanna Pawlowska
    • 2
  • Andrzej A. Wyszogrodzki
    • 1
  1. 1.National Center for Atmospheric ResearchBoulderUSA
  2. 2.Institute of Geophysics, Faculty of PhysicsUniversity of WarsawWarsawPoland

Personalised recommendations