Skip to main content
Log in

Distributions of microcanonical cascade weights of rainfall at small timescales

  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

Empirical frequency distributions of multiplicative cascade weights, or breakdown coefficients, at small timescales are analyzed for 5-min precipitation time series from four gauges in Germany. It is shown that histograms of the weights, W, are strongly deformed by the recording precision of rainfall amounts. A randomization procedure is proposed to statistically remove the artifacts due to precision errors in the original series. Evolution of the probability distributions of W from beta-like for large timescales to combined beta-normal distribution with a pronounced peak at W ≈ 0.5 for small timescales is observed. A new 3N-B distribution built from 3 separate normal, N, distributions and one beta, B, distribution is proposed for reproduction of the empirical histograms of W at small timescales. Parameters of the 3N-B distributions are fitted for all gauges and analyzed timescales. Microcanonical cascades models with a generator based on 3N-B distributions are developed and their performance at disaggregating precipitation at 1280-min intervals down to 5-min intervals is evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahrens, B. (2003), Rainfall downscaling in an alpine watershed applying a multiresolution approach, J. Geophys. Res. 108,D8, 8388, DOI: 10.1029/2001JD001485.

    Article  Google Scholar 

  • Cârsteanu, A., and E. Foufoula-Georgiou (1996), Assessing dependence among weights in a multiplicative cascade model of temporal rainfall, J. Geophys. Res. 101,D21, 26363–26370, DOI: 10.1029/96JD01657.

    Article  Google Scholar 

  • Cârsteanu, A., V. Venugopal, and E. Foufoula-Georgiou (1999), Event-specific multiplicative cascade models and an application to rainfall, J. Geophys. Res. 104,D24, 31611–31622, DOI: 10.1029/1999JD900388.

    Article  Google Scholar 

  • de Lima, M.I.P. (1998), Multifractals and the temporal structure of rainfall, Ph.D. Thesis, Wageningen Agricultural University, Wageningen.

    Google Scholar 

  • Güntner, A., J. Olsson, A. Calver, and B. Gannon (2001), Cascade-based disaggregation of continuous rainfall time series: the influence of climate, Hydrol. Earth Syst. Sci. 5,2, 145–164, DOI: 10.5194/hess-5-145-2001.

    Article  Google Scholar 

  • Harris, D., M. Menabde, A. Seed, and G. Austin (1996), Multifractal characterization of rain fields with a strong orographic influence, J. Geophys. Res. 101,D21, 26405–26414, DOI: 10.1029/96JD01656.

    Article  Google Scholar 

  • Harris, D., A. Seed, M. Menabde, and G. Austin (1997), Factors affecting multiscaling analysis of rainfall time series, Nonlin. Processes Geophys. 4,3, 137–156, DOI: 10.5194/npg-4-137-1997.

    Article  Google Scholar 

  • Harris, D., M. Menabde, A. Seed, and G. Austin (1998), Breakdown coefficients and scaling properties of rain fields, Nonlin. Processes Geophys. 5,2, 93–104, DOI: 10.5194/npg-5-93-1998.

    Article  Google Scholar 

  • Koutsoyiannis, D. (2003), Rainfall disaggregation methods: Theory and applications. In: D. Piccolo and L. Ubertini (eds.), Proc. Workshop on Statistical and Mathematical Methods for Hydrological Analysis, Rome, 1–23, Universitá di Roma “La Sapienza”, http://itia.ntua.gr/en/docinfo/570.

  • Langousis, A., and D. Veneziano (2007), Intensity-duration-frequency curves from scaling representations of rainfall, Water Resour. Res. 43, W02422, DOI: 10.1029/2006WR005245.

    Article  Google Scholar 

  • Licznar, P. (2009), Synthetic Rainfall Time-series Generators for Needs of Stormwater and Combined Sewage Systems Modelling, Monographs 77, Wrocław University of Environtal and Life Sciences, Wrocław (in Polish).

    Google Scholar 

  • Licznar, P., J. Łomotowski, and D.E. Rupp (2011), Random cascade driven rainfall disaggregation for urban hydrology: An evaluation of six models and a new generator, Atmos. Res. 99,3–4, 563–578, DOI: 10.1016/j.atmosres.2010.12.014.

    Article  Google Scholar 

  • Marshak, A., A. Davis, R. Cahalan, and W. Wiscombe (1994), Bounded cascade models as nonstationary multifractals, Phys. Rev. E 49,1, 55–69, DOI: 10.1103/PhysRevE.49.55.

    Article  Google Scholar 

  • Menabde, M., and M. Sivapalan (2000), Modeling of rainfall time series and extremes using bounded random cascades and levy-stable distributions, Water Resour. Res. 36,11, 3293–3300, DOI: 10.1029/2000WR900197.

    Article  Google Scholar 

  • Menabde, M., D. Harris, A. Seed, G. Austin, and D. Stow (1997), Multiscaling properties of rainfall and bounded random cascades, Water Resour. Res. 33,12, 2823–2830, DOI: 10.1029/97WR02006.

    Article  Google Scholar 

  • Molnar, P., and P. Burlando (2005), Preservation of rainfall properties in stochastic disaggregation by a simple random cascade model, Atmos. Res. 77,1-4, 137–151, DOI: 10.1016/j.atmosres.2004.10.024.

    Article  Google Scholar 

  • Olsson, J. (1998), Evaluation of a scaling cascade model for temporal rainfall disaggregation, Hydrol. Earth Syst. Sci. 2,1, 19–30, DOI: 10.5194/hess-2-19-1998.

    Article  Google Scholar 

  • Over, T.M., and V.K. Gupta (1994), Statistical analysis of mesoscale rainfall: Dependence of a random cascade generator on large-scale forcing, J. Appl. Meteor. 33,12, 1526–1542, DOI: 10.1175/1520-0450(1994) 033<1526:SAOMRD>2.0.CO;2.

    Article  Google Scholar 

  • Pathirana, A., S. Herath, and T. Yamada (2003), Estimating rainfall distributions at high temporal resolutions using a multifractal model, Hydrol. Earth Syst. Sci. 7,5, 668–679, DOI: 10.5194/hess-7-668-2003.

    Article  Google Scholar 

  • Paulson, K.S., and P.D. Baxter (2007), Downscaling of rain gauge time series by multiplicative beta cascade, J. Geophys. Res. 112,D09105, DOI: 10.1029/2006JD007333.

  • Robert, C.P. (1995), Simulation of truncated normal variables, Stat. Comput. 5,2, 121–125, DOI: 10.1007/BF00143942.

    Article  Google Scholar 

  • Rupp, D.E., R.F. Keim, M. Ossiander, M. Brugnach, and J.S. Selker (2009), Time scale and intensity dependency in multiplicative cascades for temporal rainfall disaggregation, Water Resour. Res. 45, W07409, DOI: 10.1029/2008WR007321.

    Article  Google Scholar 

  • Tessier, Y., S. Lovejoy, and D. Schertzer (1993), Universal multifractals: Theory and observations for rain and clouds, J. Appl. Meteor. 32,2, 223–250, DOI: 10.1175/1520-0450(1993)032<0223:UMTAOF>2.0.CO;2.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Licznar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Licznar, P., Schmitt, T.G. & Rupp, D.E. Distributions of microcanonical cascade weights of rainfall at small timescales. Acta Geophys. 59, 1013–1043 (2011). https://doi.org/10.2478/s11600-011-0014-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-011-0014-4

Key words

Navigation