Skip to main content

Advertisement

Log in

Correlation analysis of vertical total electron content

  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

It is necessary to model and analyze the ionospheric effects due to a direct relationship between Global Positioning System (GPS) applications and changes in the ionosphere. In order to monitor these changes, the ionosphere can be represented by the vertical total electron content (VTEC) which can be used to analyze ionospheric conditions from a variety of stations. In this study, 21 stations were used to carry out analysis and estimation of VTEC. Three days during a geomagnetic storm, namely, 7, 8, and 9 January 2005, are chosen for investigation. In addition, the de-correlation time of the VTEC was estimated to define ionospheric variations in time using autocorrelation analysis. The de-correlation time of the ionosphere is based on correlation times estimated by using autocorrelation functions. From the high-latitude stations, the mean of the correlation times decreased from 8 to 6 epochs during a storm. In this time period, it was found from the station results that the ionosphere was more affected at the high-latitude than at the mid-latitude region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cander, L.R., and L. Ciraolo (2010), Ionospheric Total Electron Content and critical frequencies over Europe at solar minimum, Acta Geophys. 58, 3, 468–490, DOI: 10.2478/s11600-009-0061-2.

    Article  Google Scholar 

  • Dach, R., U. Hugentobler, P. Fridez, and M. Meindl (eds.) (2007), Bernese GPS Software Version 5.0, Astronomical Institute, University of Bern.

  • Grejner-Brzezinska, D.A., N. Arslan, P. Wielgosz, and C.-K. Hong (2009), Network calibration for unfavorable reference-rover geometry in network-based RTK: Ohio CORS case study, J. Surv. Engrg. 135, 3, 90–100, DOI: 10.1061/(ASCE)0733-9453(2009)135:3(90).

    Article  Google Scholar 

  • Haro Barbás, B.F. de, V.H. Ríos, A. Pérez Gómez, and M. Santillán (2002), Variations of total electron content during a magnetic storm, Geofís. Int. 41, 1, 49–55.

    Google Scholar 

  • Hernandez-Pajares, M., J.M. Juan, J. Sanz, R. Orus, and M. Garcia-Fernandez (2004), GPS Ionospheric Monitoring, Presentation at the Colloquium on Atmospheric Remote Sensing using Global Positioning System, 20 June–2 July 2004, Boulder, CO.

  • Hernández-Pajares, M., J.M. Juan, J. Sanz, R. Orus, A. Garcia-Rigo, J. Feltens, A. Komjathy, S.C. Schaer, and A. Krankowski (2009), The IGS VTEC maps: a reliable source of ionospheric information since 1998, J. Geod. 83, 3–4, 263–275, DOI: 10.1007/s00190-008-0266-1.

    Article  Google Scholar 

  • Komjathy, A., B.D. Wilson, B. Iijima, and A.J. Mannucci (2006), Daily JPL processing of 1000+ ground-based GPS receivers to estimate ınterfrequency biases and other practical applications. In: T. Springer, G. Gendt, and J.M. Dow (eds.), Proc. IGS Workshop 2006 “The International GNSS Service (IGS): Perspectives and Visions for 2010 and Beyond”, Darmstadt, Germany, 8–12 May 2006 (abstract and presentation).

  • Krankowski, A., I.I. Shagimuratov, L.W. Baran, and I.I. Ephishov (2005), Study of TEC fluctuations in Antarctic ionosphere during storm using GPS observations, Acta Geophys. Pol. 53, 2, 205–218.

    Google Scholar 

  • Liu, Z., S. Skone, Y. Gao, and A. Komjathy (2005), Ionospheric modeling using GPS data, GPS Solut. 9, 1, 63–66, DOI: 10.1007/s10291-004-0129-z.

    Article  Google Scholar 

  • Orús, R., M. Hernández-Pajares, J.M. Juan, J. Sanz, and M. García-Fernández (2002), Performance of different TEC models to provide GPS ionospheric corrections, J. Atmos. Sol.-Terr. Phys. 64, 18, 2055–2062, DOI: 10.1016/S1364-6826(02)00224-9.

    Article  Google Scholar 

  • Paris, J., and M. Menvielle (2004), The ISGI WWW homepage, 35th COSPAR Scientific Assembly, held 18–25 July 2004, in Paris, France, Raport 2909.

  • Rama Rao, P.V.S., S. Gopi Krishna, K. Niranjan, and D.S.V.V.D. Prasad (2006), Temporal and spatial variations in TEC using simultaneous measurements from the Indian GPS network of receivers during the low solar activity period of 2004–2005, Ann. Geophys. 24, 3279–3292, DOI: 10.5194/angeo-24-3279-2006.

    Article  Google Scholar 

  • Rideout, W., and A. Coster (2006), Automated GPS processing for global total electron content data, GPS Solut. 10, 3, 219–228, DOI: 10.1007/s10291-006-0029-5.

    Article  Google Scholar 

  • Sardón, E., and N. Zarraoa (1997), Estimation of total electron content using GPS data: How stable are the differential satellite and receiver instrumental biases?, Radio Sci. 32, 5, 1899–1910, DOI: 10.1029/97RS01457.

    Article  Google Scholar 

  • Stanisławska, I., and A. Belehaki (2009), Space weather observational activities and data management in Europe, Acta Geophys. 57, 1, 236–244, DOI: 10.2478/s11600-008-0076-0.

    Article  Google Scholar 

  • Tsagouri, I., B. Zolesi, L.R. Cander, and A. Belehaki (2010), DIAS effective sunspot number as an indicator of the ionospheric activity level over Europe, Acta Geophys. 58, 3, 491–512, DOI: 10.2478/s11600-009-0045-2.

    Article  Google Scholar 

  • Wild, U. (1994), Ionosphere and Geodetic Satellite Systems: Permanent GPS Tracking Data for Modelling and Monitoring, Geod.-Geophys. Arb. Schweiz. 48, Schweizerischer Geodätischen Kommission, Zurich.

    Google Scholar 

  • Wu, S., K. Zhang, Y. Yuan, and F. Wu (2006), Spatio-temporal characteristics of the ionospheric TEC variation for GPSnet-based real-time positioning in Victoria, J. Glob. Position. Syst. 5, 1–2, 52–57, DOI: 10.5081/jgps.5.1.52.

    Article  Google Scholar 

  • Yousuf, R., and S. Skone (2005), WAAS performance evaluation under increased ionospheric activity. In: Proc. 18th Inter. Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS — 2005), 13–16 September, Long Beach, CA.

  • Yue, X., W. Wan, L. Liu, and T. Mao (2007), Statistical analysis on spatial correlation of ionospheric day-to-day variability by using GPS and Incoherent Scatter Radar observations, Ann. Geophys. 25, 8, 1815–1825, DOI: 10.5194/angeo-25-1815-2007.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niyazi Arslan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arslan, N. Correlation analysis of vertical total electron content. Acta Geophys. 59, 377–397 (2011). https://doi.org/10.2478/s11600-010-0042-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-010-0042-5

Key words

Navigation