Skip to main content

Advertisement

Log in

A multiyear analysis of aerosol optical thickness over Europe and Central Poland using NAAPS model simulation

  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

This study contains a comparative analysis of aerosol optical thickness (AOT) between numerical calculations obtained from the Navy Aerosol Analysis and Prediction System (NAAPS) model and direct observations from the AERONET robotic network and the Saharan Aerosol over WArsaw (SAWA) field campaign. AOT was calculated for 500 nm wavelength. The comparison shows underestimation of the total aerosol optical thickness simulated by NAAPS. The correlation coefficients between model and observation oscillates between 0.57 and 0.72. Results of seven-year (1998–2004) NAAPS simulation of aerosol components (sea salt, mineral dust, sulphate, and smoke) show large temporal and spatial variability of the aerosol optical thickness over Europe. The least polluted region is the Iberian Peninsula, while the highest aerosol burdens occurred in Central Europe, mostly due to anthropogenic sulphate particles. Finally, the analysis of mineral dust transport shows frequent episodes of Saharan dust inflow over Central Europe. There are about 20 days a year (4 days in May) when instantaneous AOT associated with mineral dust aerosol increases over 0.1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson, J.R., E.E. Hardy, J.T. Roach, and R.E. Witmer (1976), A land use and land cover classification system for use with remote sensor data, Geol. Surv. Prof. Paper 964, 1–28.

    Google Scholar 

  • Benkowitz, C.M., M.T. Scholtz, J. Pacyna, L. Tarrasón, J. Dignon, E.C. Voldner, P.A. Spiro, J.A. Logan, and T.E. Graedel (1996), Global gridded invento ries of anthropogenic emissions of sulfur and nitrogen, J. Geophys. Res. 101, D22, 29239–29253, DOI: 10.1029/96JD00126.

    Article  Google Scholar 

  • Bösenberg, J., V. Matthias, A. Amodeo, V. Amoiridis, A. Ansmann, J.M. Baldasano, I. Balin, C. Böckmann, A. Boselli, G. Carlsson, A. Chaykovski, G. Chourdakis, A. Comeron, F. DeTomasi, R. Eixmann, V. Freudenthaler, H. Giehl, I. Grigorov, A. Hågård, M. Iarlori, A. Kirsche, G. Kolarov, L. Komguem, S. Kreipl, W. Kumpf, G. Larchevêque, H. Linne, R. Matthey, I. Mattis, A. Mekler, I. Mironova, V. Mitev, L. Mona, D. Müller, S. Music, S. Nickovic, M. Pandolfi, A. Papayannis, G. Pappalardo, J. Pelon, C. Peres, R.M. Perrone, R. Persson, D.P. Resendes, V. Rizi, F. Rocadenbosch, J. Rodriguez, L. Sauvage, L. Schneidenbach, R. Schumacher, V. Shcherbakov, V. Simeonov, P. Sobolewski, N. Spinelli, I. Stachlewska, D. Stoyanov, T. Trickl, G. Tsaknakis, G. Vaughan, U. Wandinger, X. Wang, M. Wiegner, M. Zavrtanik, and C. Zerefos (2003), EARLINET: A European Aerosol Research Lidar Network to establish an aerosol climatology, MPI-Report, Max-Planck-Institute for Meteorology, Hamburg, Germany, 348 pp.

    Google Scholar 

  • Charlson, R.J., S.E. Schwartz, J.M. Hales, R.D. Cess, J.A. Coakley, Jr., J.E. Hansen, and D.J. Hofmann (1992), Climate forcing by anthropogenic aerosols, Science 255, 5043, 423–430, DOI: 10.1126/science.255.5043.423.

    Article  Google Scholar 

  • Chin, M., P. Ginoux, S. Kinne, O. Torres, B.N. Holben, B.N. Duncan, R.V. Martin, J.A. Logan, A. Higurashi, and T. Nakajima (2002), Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements, J. Atmos. Sci. 59, 3, 461–483, DOI: 10.1175/1520-0469(2002)059〈0461:TAOTFT〉2.0.CO;2.

    Article  Google Scholar 

  • Christensen, J.H. (1997), The Danish Eulerian Hemispheric Model — a three-dimensional air pollution model used for the Arctic, Atm. Env. 31, 24, 4169–4191, DOI: 10.1016/S1352-2310(97)00264-1.

    Article  Google Scholar 

  • Coakley, J.A., Jr., and R.D. Cess (1985), Response of the NCAR Community Climate Model to the radiative forcing by the naturally occurring tropospheric aerosol, J. Atmos. Sci. 42, 16, 1677–1692, DOI: 10.1175/1520-0469(1985)042〈1677:ROTNCC〉2.0.CO;2.

    Article  Google Scholar 

  • Debry, E., K. Fahey, K. Sartelet, B. Sportisse, and M. Tombette (2007), Technical note: A new SIze REsolved Aerosol Model (SIREAM), Atmos. Chem. Phys. 7, 1537–1547, DOI: 10.5194/acp-7-1537-2007.

    Article  Google Scholar 

  • Giglio, L., G.R. van der Werf, J.T. Randerson, G.J. Collatz, and P. Kasibhatla (2005), Global estimation of burned area using MODIS active fire observations, Atmos. Chem. Phys. Discuss. 5, 6, 11091–11141.

    Article  Google Scholar 

  • Giglio, L., I. Csiszar, and C.O. Justice (2006), Global distribution and seasonality of active fires as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, J. Geophys. Res. 111, G02016, DOI: 10.1029/2005JG000142.

    Article  Google Scholar 

  • Ginoux, P., L.W. Horowitz, V. Ramaswamy, I.V. Geogdzhayev, B.N. Holben, G. Stenchikov, and X. Tie (2006), Evaluation of aerosol distribution and optical depth in the Geophysical Fluid Dynamics Laboratory coupled model CM2.1 for present climate, J. Geophys. Res. 111, D22210, DOI: 10.1029/2005JD006707.

    Article  Google Scholar 

  • Grassl, H., and M. Newiger (1982), Changes of local planetary albedo by aerosol particles, Sci. Total Environ. 23, 313–320, DOI: 10.1016/0048-9697(82)90148-6.

    Article  Google Scholar 

  • Harrison, L., J. Michalsky, and J. Berndt (1994), Automated multifilter rotating shadow-band radiometer: an instrument for optical depth and radiation measurements, Appl. Optics 33, 22, 5118–5125, DOI: 10.1364/AO.33.005118.

    Article  Google Scholar 

  • Hess, M., P. Koepke, and I. Schult (1998), Optical Properties of Aerosols and Clouds: The software package OPAC, Bull. Am. Meteorol. Soc. 79, 5, 831–844, DOI: 10.1175/1520-0477(1998)079〈0831:OPOAAC〉2.0.CO;2.

    Article  Google Scholar 

  • Hogan, T.F., and T.E. Rosmond (1991), The description of the Navy Operational Global Atmospheric Prediction System’s spectral forecast model, Monthly Weather Rev. 119, 8, 1786–1815, DOI: 10.1175/1520-0493(1991)119〈1786:TDOTNO〉2.0.CO;2.

    Article  Google Scholar 

  • Holben, B.N., D. Tanré, A. Smirnov, T.F. Eck, I. Slutsker, N. Abuhassan, W.W. Newcomb, J.S. Schafer, B. Chatenet, F. Lavenu, Y.J. Kaufman, J.V. Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karneli, N.T. O’Neill, C. Pietras, R.T. Pinker, K. Voss, and G. Zibordi (2001), An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET, J. Geophys. Res. 106, 12067–12098, DOI: 10.1029/2001JD900014.

    Article  Google Scholar 

  • IPCC (2007), Summary for Policymakers. In: S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller (eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, and New York, NY, USA, http://www.ipcc.ch/SPM2feb07.pdf.

    Google Scholar 

  • Markowicz, K.M., P.J. Flatau, A.E. Kardas, J. Remiszewska, K. Stelmaszczyk, and L. Woeste (2008), Ceilometer retrieval of the boundary layer vertical aerosol extinction structure, J. Atmos. Ocean. Tech. 25, 928–944, DOI: 10.1175/2007JTECHA1016.1.

    Article  Google Scholar 

  • Matthias, V. (2008), The aerosol distribution in Europe derived with the Community Multiscale Air Quality (CMAQ) model: comparison to near surface in situ and sunphotometer measurements, Atmos. Chem. Phys. Discuss. 8, 1457–1503.

    Article  Google Scholar 

  • McCormick, R.A., and J.H. Ludwig (1967), Climate modification by atmospheric aerosols, Science 156, 3780, 1358–1359, DOI: 10.1126/science.156.3780.1358.

    Article  Google Scholar 

  • Monahan, E.C., D.E. Spiel, and K.L. Davidson (1986), A model of marine aerosol generation via whitecaps and wave disruption. In: E.C. Monahan and G. MacNiocaill (eds.), Oceanic Whitecaps and Their Role in Air-Sea Exchange Processes, D. Reidel Publ. Co., Dordrecht, New York, 167–174.

    Google Scholar 

  • Morys, M., F.M. Mims III, S. Hagerup, S.E. Anderson, A. Baker, J. Kia, and T. Walkup (2001), Design, calibration, and performance of MICROTOPS II handheld ozone monitor and Sun photometer, J. Geophys. Res. 106, D13, 14573–14582, DOI: 10.1029/2001JD900103.

    Article  Google Scholar 

  • Moulin, C., F. Dulac, C.E. Lambert, P. Chazette, I. Jankowiak, B. Chatenet, and F. Lavenu (1997), Long-term daily monitoring of Saharan dust load over ocean using Meteosat ISCCP-B2 data 2. Accuracy of the method and validation using Sun photometer measurements, J. Geophys. Res. 102, D14, 16959–16969, DOI: 10.1029/96JD02598.

    Article  Google Scholar 

  • Nickovic, S., G. Kallos, A. Papadopoulos, and O. Kakaliagou (2001), A model for prediction of desert dust cycle in the atmosphere, J. Geophys. Res. 106, D16, 18113–18129, DOI: 10.1029/2000JD900794.

    Article  Google Scholar 

  • Papayannis, A., V. Amiridis, L. Mona, G. Tsaknakis, D. Balis, J. Bösenberg, A. Chaikovski, F. De Tomasi, I. Grigorov, I. Mattis, V. Mitev, D. Müller, S. Nickovic, C. Pérez, A. Pietruczuk, G. Pisani, F. Ravetta, V. Rizi, M. Sicard, T. Trickl, M. Wiegner, M. Gerding, R.E. Mamouri, G. D’Amico, and G. Pappalardo (2008), Systematic lidar observations of Saharan dust over Europe in the frame of EARLINET (2000–2002), J. Geophys. Res. 113, D10204, DOI: 10.1029/2007JD009028.

    Article  Google Scholar 

  • Papayannis, A., R.E. Mamouri, V. Amiridis, S. Kazadzis, C. Pérez, G. Tsaknakis, P. Kokkalis, and J.M. Baldasano (2009), Systematic lidar observations of Saharan dust layers over Athens, Greece in the frame of EARLINET project (2004–2006), Ann. Geophys. 27, 3611–3620.

    Article  Google Scholar 

  • Redington, A.L., and R.G. Derwent (2002), Calculation of sulphate and nitrate aerosol concentrations over Europe using a Lagrangian dispersion model, Atmos. Environ. 36, 4425–4439, DOI: 10.1016/S1352-2310(02)00420-X.

    Article  Google Scholar 

  • Reid, J.S., E.J. Hyer, E.M. Prins, D.L. Westphal, J. Zhang, J. Wang, S.A. Christopher, C.A. Curtis, C.C. Schmidt, D.P. Eleuterio, K.A. Richardson, and J.P. Hoffman (2009), Global monitoring and forecasting of biomassburning smoke: Description of and lessons from the Fire Locating and Modeling of Burning Emissions (FLAMBE) Program, IEEE JSTARS 2, 3, 144–162, DOI: 10.1109/JSTARS.2009.2027443.

    Google Scholar 

  • Schaap, M., M. van Loon, H.M. ten Brink, F.J. Dentener, and P.J.H. Builtjes (2004), Secondary inorganic aerosol simulations for Europe with special attention to nitrate, Atmos. Chem. Phys. 4, 857–874, DOI: 10.5194/acp-4-857-2004.

    Article  Google Scholar 

  • Smirnov, A., B.N. Holben, T.F. Eck, O. Dubovik, and I. Slutsker (2000), Clouds-creening and quality control algorithms for the AERONET database, Remote Sens. Environ. 73, 3, 337–349, DOI: 10.1016/S0034-4257(00)00109-7.

    Article  Google Scholar 

  • Tombette, M., P. Chazette, B. Sportisse, and Y. Roustan (2008), Simulation of aerosol optical properties over Europe with a 3-D size-resolved aerosol model: Comparisons with AERONET data, Atmos. Chem. Phys. 8, 7115–7132, DOI: 10.5194/acp-8-7115-2008.

    Article  Google Scholar 

  • Westphal, D.L., O.B. Toon, and T.N. Carlson (1988), A case study of mobilization and transport of Saharan dust, J. Atmos. Sci. 45, 15, 2145–2175, DOI: 10.1175/1520-0469(1988)045〈2145:ACSOMA〉2.0.CO;2

    Article  Google Scholar 

  • Witek, M.L., P.J. Flatau, P.K. Quinn, and D.L. Westphal (2007), Global sea-salt modeling: Results and validation against multicampaign shipboard measurements, J. Geophys. Res. 112, D08215, DOI: 10.1029/2006JD007779.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aneta E. Maciszewska.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maciszewska, A.E., Markowicz, K.M. & Witek, M.L. A multiyear analysis of aerosol optical thickness over Europe and Central Poland using NAAPS model simulation. Acta Geophys. 58, 1147–1163 (2010). https://doi.org/10.2478/s11600-010-0034-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-010-0034-5

Key words

Navigation