Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Multi-disciplinary earthquake researches in Western Turkey: Hints to select sites to study geochemical transients associated to seismicity

Abstract

Warm and hot spring water as well as soil gas radon release patterns have been monitored in the Aegean Extensional Province of Western Turkey, alongside regional seismic events, providing a multi-disciplinary approach. In the study period of 20 months, seven moderate earthquakes with M L between 4.0 and 4.7 occurred in this seismically very active region; two earthquakes with magnitude 5.0 also occurred near the study area. Seismic monitoring showed no foreshock activity. By contrast, hydro-geochemical anomalies were found prior to these seismic events, each lasting for weeks. The anomalies occurred foremost in conjunction with dip-slip events and seem to support the dilatancy and water diffusion hypothesis. Increased soil gas radon release was recorded before earthquakes associated with strike-slip faults, but no soil radon anomalies were seen before earthquakes associated with dip-slip faults. Geochemical anomalies were also noticeably absent at some springs throughout the postulated deformation zones of impending earthquakes. The reason for this discrepancy might be due to stress/strain anisotropies.

This is a preview of subscription content, log in to check access.

References

  1. Abbad, S., M.C. Robe, M. Bernat, and V. Labed (1995), Influence of meteorological and geological parameter variables on the concentration of radon in soil gases: Application to seismic forecasting in the Provence-Alpes-Cote d’Azur region, Environ. Geochim. Health 16, 35–48.

  2. Altunel, E., and P.L. Hancock (1993), Active fissuring and faulting in Quaternary travertines at Pamukkale, western Turkey, Z. Geomorph. N.F. 94, 285–302.

  3. Areshidze, G., F. Bella, P.F. Biagi, M. Caputo, G. Della Monica, A. Ermini, P. Manjgaladze, G. Melikadze, V. Sgrigna, and D. Zilpimiani (1992), No preseismic evidence from hydrogeochemical parameters on the occasion of the April 29, 1991, Georgian earthquake, Caucasus, Tectonophysics 213, 3–4, 353–358, DOI: 10.1016/0040-1951(92)90463-G.

  4. Bella, F., P.F. Biagi, M. Caputo, G. Della Monica, A. Ermini, P. Manjgaladze, V. Sgrigna, and D. Zilpimiani (1990), Very slow-moving crustal strain disturbances, Tectonophysics 179, 1–2, 131–139, DOI: 10.1016/0040-1951(90)90362-C.

  5. Bella, F., P.F. Biagi, M. Caputo, E. Cozzi, G. Della Monica, A. Ermini, E.I. Gordeez, Y.M. Khatkevich, G. Martinelli, W. Plastino, R. Scandone, V. Sgrigna, and D. Zilpimiani (1998), Hydrogeochemical anomalies in Kamchatka (Russia), Phys. Chem. Earth 23, 9–10, 921–925, DOI: 10.1016/S0079-1946(98)00120-7.

  6. Birchard, G.F., and W.F. Libby (1978), Earthquake associated radon anomalies-possible mechanisms, Eos Trans. AGU 59, 4, 329.

  7. Bozkurt, E. (2001), Neotectonics of Turkey - a synthesis, Geodin. Acta 14, 1–3, 3–30, DOI: 10.1016/S0985-3111(01)01066-X.

  8. Bozkurt, E. (2003), Origin of NE-trending basins in western Turkey, Geodin. Acta 16, 61–81, DOI: 10.1016/S0985-3111(03)00002-0.

  9. Bozkurt, E., and B. Rojay (2005), Episodic, two-stage Neogene extension and short-term intervening compression in western Turkey: field evidence from the Kiraz Basin and Bozdağ Horst, Geodin. Acta 18, 3–4, 299–316, DOI: 10.3166/ga.18.299-316.

  10. Chyi, L.L., C.Y. Chou, T.F. Yang, and C.H. Chen (2001), Continuous radon measurements in faults and earthquake precursor pattern recognition, Western Pacific Earth Sci. 1, 2, 227–243.

  11. Claesson, L., A. Skelton, C. Graham, C. Dietl, M. Mörth, P. Torssander, and I. Kockum (2004), Hydrogeochemical changes before and after a major earthquake, Geology 32, 8, 641–644, DOI: 10.1130/G20542.1.

  12. Claesson, L., A. Skelton, C. Graham, and C-M. Mörth (2007), The timescale and mechanisms of fault sealing and water-rock interaction after an earthquake, Geofluids 7, 4, 427–440, DOI: 10.1111/j.1468-8123.2007.00197.x.

  13. Dobrovolsky, I.P., S.I. Zubkov, and V.I. Miachkin (1979), Estimation of the size of earthquake preparation zones, Pure Appl. Geophys. 117, 5, 1025–1044, DOI: 10.1007/BF00876083.

  14. Etiope G., M. Calcara, and F. Quattrocchi (1997), Seismogeochemical algorithms for earthquake prediction: an overview, Ann. Geofis. 15, 6, 1483–1492.

  15. Evans, J.R., G.R. Foulger, B.R. Julian, and A.D. Miller (1996), Crustal shear-wave splitting from local earthquakes in the Hengill Triple Junction, southwest Iceland, Geophys. Res. Lett. 23, 5, 455–458, DOI: 10.1029/96GL00261.

  16. Federico C., L. Pizzino, D. Cinti, S. De Gregorio, R. Favara, G. Galli, G. Giudice, S. Guerrieri, F. Quattrocchi, and N. Voltattorni (2008), Inverse and forward modelling of groundwater circulation in a seismically active area (Monferrato, Piedmont, NW Italy): Insights into stress-induced variations in water chemistry, Chem. Geol. 248, 14–39, DOI: 10.1016/j.chemgeo.2007.10.007.

  17. Fleischer, R.L. (1981), Dislocation model for radon response to distant earthquakes, Geophys. Res. Lett. 8, 5, 477–480, DOI: 10.1029/GL008i005p00477.

  18. Flerov, G.N., A.M. Chirkov, S.P. Tretyakova, L.V. Dzholos, and K.I. Merkina (1986), The use of radon as an indicator of volcanic process, Earth Physics 22, 213–216.

  19. Fournier, R.O. (1977), Chemical geothermometers and mixing models for geothermal systems, Geothermics 5, 41–50, DOI: 10.1016/0375-6505(77)90007-4.

  20. Freund, F.T., A. Takeuchi, and B.W.S. Lau (2006), Electric currents streaming out of stressed igneous rocks - A step towards understanding pre-earthquake low frequency EM emissions, Phys. Chem. Earth 31, 4–9, 389–396, DOI: 10.1016/j.pce.2006.02.027.

  21. Freund, F.T. (2008), Earthquake probabilities and pre-earthquake signals, Current Science 94, 3, 311–313.

  22. Geller, R.J., D.D. Jackson, Y.Y Kagan, and F. Mulargia (1997), Earthquakes cannot be predicted, Science 275, 5306, 1616–1617, DOI: 10.1126/science.275.5306.1616.

  23. Genç, C.Ş., Ş. Altunkaynak, Z. Karacık, M. Yazman, and Y. Yılmaz (2001), The Çubukludağ graben, south of İzmir: its tectonic significance in the Neogene geological evolution of the western Anatolia, Geodin. Acta 14, 1, 45–55, DOI: 10.1016/S0985-3111(00)01061-5.

  24. Hancock, P.L., and A.A. Barka (1987), Kinematic indicators on active normal faults in western Turkey, J. Struct. Geol. 9, 573–584, DOI: 10.1016/0191-8141(87)90142-8.

  25. Hartmann, J., and J.K. Levy (2005), Hydrogeological and gasgeochemical earthquake precursors - A review for application, Nat. Hazards 34, 3, 279–304, DOI: 10.1007/s11069-004-2072-2.

  26. Hartmann, J., and J.K. Levy (2006), The influence of seismotectonics on precursory changes in groundwater composition for the 1995 Kobe earthquake, Japan, Hydrogeol. J. 14, 7, 1307–1318, DOI: 10.1007/s10040-006-0030-7.

  27. Hauksson, E. (1981), Radon content of groundwater as an earthquake precursor: Evaluation of worldwide data and physical basis, J. Geophys. Res. 86, B10, 9397–9410, DOI: 10.1029/JB086iB10p09397.

  28. Hauksson, E., and J.G. Goddard (1981), Radon earthquake precursor studies in Iceland, J. Geophys. Res. 86, B8, 7037–7054, DOI: 10.1029/JB086iB08p07037.

  29. Heiligmann, M., J. Stix, G. Williams-Jones, B. Sherwood-Lollar, and V.G. Garzon (1997), Distal degassing of radon and carbon dioxide on Galeras volcano, Colombia, J. Volcanol. Geoth. Res. 77, 1–4, 267–283, DOI: 10.1016/S0377-0273(96)00099-6.

  30. Hubbard, L.M., and N. Hagberg (1996), Time-variation of the soil gas radon concentration under and near a Swedish house, Environ. Int. 22, suppl. 1, 477–482, DOI: 10.1016/S0160-4120(96)00148-1.

  31. Iskandar, D., H. Yamazawa, and T. Iida (2004), Quantification of the dependency of radon emanation power on soil temperature, Appl. Radiat. Isotopes 60, 6, 971–973, DOI: 10.1016/j.apradiso.2004.02.003.

  32. İnan, S., S. Ergintav, R. Saatçılar, B. Tüzel, and Y. İravul (2007), Turkey makes major investment in earthquake research, Eos Trans. AGU 88, 34, 333–334, DOI: 10.1029/2007EO340002.

  33. İnan, S., T. Akgül, C. Seyis, R. Saatçılar, S. Baykut, S. Ergintav, and M. Baş (2008), Geochemical monitoring in the Marmara region (NW Turkey): A search for precursors of seismic activity, J. Geophys. Res. 113, B03401, DOI: 10.1029/2007JB005206.

  34. Kanamori, H., J. Mori, E. Hauksson, T.H. Heaton, L.K. Hutton, and L.M. Jones (1993), Determination of earthquake energy release and ML using TERRAscope, Bull. Seism. Soc. Am. 83, 2, 330–346.

  35. King, C.Y. (1978), Radon emanation on San Andreas Fault, Nature 271, 516–519, DOI: 10.1038/271516a0.

  36. King, C.Y. (1986), Gas geochemistry applied to earthquake prediction: An overview, J. Geophys. Res. 91, B12, 12269–12281, DOI: 10.1029/JB091iB12p12269.

  37. King, C.Y., N. Koizumi, and Y. Kitagawa (1995), Hydrogeochemical anomalies and the 1995 Kobe earthquake, Science 269, 5220, 38–39, DOI: 10.1126/science. 269.5220.38.

  38. Koçyiğit, A. (2005), The Denizli graben-horst system and the eastern limit of western Anatolian continental extension: basin fill, structure, deformational mode, throw amount and episodic evolutionary history, SW Turkey, Geodin. Acta 18, 3–4, 167–208, DOI: 10.3166/ga.18.167-208.

  39. Martin-Luis, C., M.L. Quesada, A. Eff-Darwich, J. De la Nuez, J. Coello, A. Ahijado, R. Casillas, and V. Soler (2002), A new strategy to measure radon in an active volcanic island (Tenerife, Canary Islands), Environ. Geol. 43, 1–2, 72–78, DOI: 10.1007/s00254-002-0606-z.

  40. McClusky, S., S. Balassanian, A. Barka, C. Demir, S. Ergintav, I. Georgiev, O. Gürkan, M. Hamburger, K. Hurst, H. Kahle, K. Kastens, G. Kekelidze, R. King, V. Kotzev, O. Lenk, S. Mahmoud, A. Mishin, M. Nadariya, A. Ouzounis, D. Paradissis, Y. Peter, M. Prilepin, R. Reilinger, I. Sanli, H. Seeger, A. Tealeb, M.N. Toksöz, and G. Veis (2000), Global Positioning System constraints on plate kinematics and dynamics in the eastern mediterranean and caucasus, J. Geophys. Res. 105, B3, 5695–5719, DOI: 10.1029/1996JB900351.

  41. Monnin, M.M., and J.L. Seidel (1997), Physical models related to radon emission in connection with dynamic manifestations in the upper terrestrial crust: A review, Radiat. Meas. 28, 1–6, 703–712, DOI: 10.1016/S1350-4487(97)00168-6.

  42. Montgomery, D.R., and M. Manga (2003), Streamflow and water well responses to earthquakes, Science 300, 5628, 2047–2049, DOI: 10.1126/science.1082980.

  43. Nur, A. (1974), Matsushiro, Japan, earthquake swarm: Confirmation of the dilatancy-fluid diffusion model, Geology 2, 5, 217–221, DOI: 10.1130/0091-7613(1974)2〈217:MJESCO〉2.0.CO;2.

  44. Ocakoğlu, N., E. Demirbağ, and İ. Kuşçu (2004), Neotectonic structures in the area offshore of Alaçatı, Doğanbey and Kuşadası (western Turkey): evidence of strike-slip faulting in the Aegean extensional province, Tectonophysics 391, 1–4, 67–83, DOI: 10.1016/j.tecto.2004.07.008.

  45. Papastefanou, C., M. Manolopoulou, E. Savvides, and S. Charalambous (1989), Radon monitoring at the Stivos Fault following the ML = 6.5 earthquake which occurred at Thessaloniki, Greece on 20 June 1978, Nucl. Geophys. 3, 1, 49–56.

  46. Parkhurst, D.L., and C.A.J. Apello (1999), User’s guide to PHREEQC (version 2) - a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, U.S.G.S. Water-Resources Investigations Report 99-4259, Denver, Co.

  47. Planinić, J., V. Radolić, and B. Vuković (2004), Radon as an earthquake precursor, Nucl. Instrum. Meth. A 530, 3, 568–574, DOI: 10.1016/j.nima.2004.04.209.

  48. Pizzino L., P. Burrato, F. Quattrocchi, and G. Valensise (2004), Geochemical signatures of large active faults: The example of the 5 February 1783, Calabrian earthquake (southern Italy), J. Seismol. 8, 3, 363–380, DOI: 10.1023/B:JOSE.0000038455.56343.e7.

  49. Pulinets, S.A. (2007), Natural radioactivity, earthquakes, and the ionosphere, Eos Trans. AGU 88, 20, 217–218, DOI: 10.1029/2007EO200001

  50. Pulinets, S., and K. Boyarchuk (2004), Ionospheric Precursors of Earthquakes, Springer, Berlin, 315 pp.

  51. Quattrocchi, F. (1999), In search of evidence of deep fluid discharges and pore pressure evolution in the crust to explain the seismicity style of the Umbria-Marche 1997-1998 seismic sequence (Central Italy), Ann. Geofis. 42, 4, 609–636.

  52. Quattrocchi, F., G. Di Stefano, L. Pizzino, F. Pongetti, G. Romeo, P. Scarlato, U. Sciacca, and G. Urbini (2000), Geochemical Monitoring System II prototype (GMS II) installation at the “Acqua Difesa” well, within the Etna region, first data during the 1999 volcanic crisis, J. Volcanol. Geoth. Res. 101, 3–4, 273–306, DOI: 10.1016/S0377-0273(00)00177-3.

  53. Quattrocchi, F., M. Buttinelli, B. Cantucci, D. Cinti, G. Galli, A. Gasparini, L. Magno, L. Pizzino, A. Sciarra, and N. Voltattorni (2009), Geochemical anomalies during the 2009 l’Aquila seismic sequence (Central Italy): transverse lineaments inside the activated segments? Intern. Workshop on “Active Tectonic Studies and earthquake Hazard Assessment in Syria and Neighboring Countries” at ASST Conference, Damascus, Syria, 17–19 November, 2009, 69–71.

  54. Ramola, R.C., M. Singh, A.S. Sandhu, S. Singh, and H.S. Virk (1990), The use of radon as an earthquake precursor, Int. J. Radiat. Appl. Instrum., Part E Nucl. Geophys. 4, 2, 275–287.

  55. Ramola, R.C., Y. Prasad, G. Prasad, S. Kumar, and V.M. Choubey (2008), Soil-gas radon as seismotectonic indicator in Garhwal Himalaya, Appl. Radiat. Isotopes 66, 10, 1523–1530, DOI: 10.1016/j.apradiso.2008.04.006.

  56. Reilinger, R.E, S. Ergintav, R. Bürgmann, S. McClusky, O. Lenk, A. Barka, O. Gurkan, L. Hearn, K.L. Feigl, R. Cakmak, B. Aktug, H. Ozener, and M.N. Töksoz (2000), Coseismic and postseismic fault slip for the 17 August 1999, M = 7.5, Izmit, Turkey earthquake, Science 289, 5484, 1519–1524, DOI: 10.1126/science.289.5484.1519.

  57. Reilinger, R., S. McClusky, P. Vernant, S. Lawrence, S. Ergintav, R. Cakmak, H. Özener, F. Kadirov, I. Guliev, R. Stepanyan, M. Nadariya, G. Hahubia, S. Mahmoud, K. Sakr, A. ArRajehi, D. Paradissis, A. Al-Aydrus, M. Prilepin, T. Guseva, E. Evren, A. Dmitrotsa, S.V. Filikov, F. Gomez, R. Al-Ghazzi, and G. Karam (2006), GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions, J. Geophys. Res. 111, B05411, DOI: 10.1029/2005JB004051.

  58. Rikitake, T. (1975), Earthquake precursors, Bull. Seism. Soc. Am. 65, 5, 1133–1162.

  59. Rikitake, T. (1976), Earthquake Prediction, Elsevier, Amsterdam, 357 pp.

  60. Rikitake, T. (1987), Earthquake precursors in Japan: Precursor time and detectability, Tectonophysics 136, 3–4, 265–282, DOI: 10.1016/0040-1951(87)90029-1.

  61. Rowland, J.C., M. Manga, and T.P. Rose (2008), The influence of poorly interconnected fault zone flow paths on spring geochemistry, Geofluids 8, 2, 93–101, DOI: 10.1111/j.1468-8123.2008.00208.x.

  62. Scholz, C.H., L.R. Sykes, and Y.P. Aggarwal (1973), Earthquake prediction: A physical basis, Science 181, 4102, 803–810, DOI: 10.1126/science.181.4102.803.

  63. Sol, S., A. Meltzer, R. Bürgmann, R.D. van der Hilst, R. King, Z. Chen, P.O. Koons, E. Lev, Y.P. Liu, P.K. Zeitler, X. Zhang, J. Zhang, and B. Zurek (2007), Geodynamics of the southern Tibetan Plateau from seismic anisotropy and geodesy, Geology 35, 6, 563–566, DOI: 10.1130/G23408A.1.

  64. Sornette, D. (2001), Mechanochemistry: A hypothesis for shallow earthquakes. In: R. Teisseyre and E. Majewski (eds.), Earthquake Thermodynamics and Phase Transformations in the Earth’s Interior, Academic Press, 329–366.

  65. Sultankhodhaev, G.A. (1984), Earthquake Prediction, UNESCO, Paris, 181–191.

  66. Şaroğlu, F., Ö. Emre, and İ. Kuşçu (1992), Active Fault Map of Turkey (1:2 000 000 scale), General Directorate of Mineral Research and Exploration (MTA), Ankara, Turkey.

  67. Şengör, A.M.C. (1979), The North Anatolian transform fault: its age, offset and tectonic significance, J. Geol. Soc. London 136, 3, 269–282, DOI: 10.1144/gsjgs.136.3.0269.

  68. Şengör, A.M.C., and Y. Yılmaz (1981), Tethyan evolution of Turkey: A plate tectonic approach, Tectonophysics 75, 3–4, 181–241, DOI: 10.1016/0040-1951(81)90275-4.

  69. Şengör, A.M.C., N. Görür, and F. Şaroğlu (1985), Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In: K.T. Biddle, and N. Christie-Blick (eds.), Strike-slip Deformation, Basin Formation, and Sedimentation, Society of Economic Paleontologists and Mineralogists, Spec. Publ. 37, 227–264.

  70. Şimşek, Ş. (1982), Geology and geothermal possibilities of the Denizli Sarayköy-Buldan region (Denizli Sarayköy-Buldan Alanının Jeolojisi ve Jeotermal Olanakları), Ph.D. Thesis, İstanbul University, İstanbul, Turkey, 168 pp.

  71. Şimşek, Ş. (1985), Geothermal model of Denizli, Sarayköy-Buldan area, Geothermics 14, 2–3, 393–417, DOI: 10.1016/0375-6505(85)90078-1.

  72. Talwani, P., W.S. Moore, and J. Chiang (1980), Radon anomalies and microearthquakes at Lake Jocassee, South Carolina, J. Geophys. Res. 85, B6, 3079–3088, DOI: 10.1029/JB085iB06p03079.

  73. Tanner, A.B. (1980), Radon migration in the ground: A supplementary review. In: T.F. Gesell, and W.M. Lowder (eds.), Natural Radiation Environment III, U.S. Dept. Energy Rept., CONF-780422, 1, 5–56.

  74. Tansi, C., A. Tallarico, G. Iovine, M. Folino Gallo, and G. Falcone (2005), Interpretation of radon anomalies in seismotectonic and tectonic-gravitational settings: the south-eastern Crati graben (Northern Calabria, Italy), Tectonophysics 396, 3–4, 181–193, DOI: 10.1016/j.tecto.2004.11.008.

  75. Thomas, D.M., K.E. Cuff, and M.E. Cox (1986), The association between ground gas radon variations and geologic activity in Hawaii, J. Geophys. Res. 91, B12, 12186–12198, DOI: 10.1029/JB091iB12p12186.

  76. Thomas, D.M., J.M. Cotter, and D. Holford (1992), Experimental design for soil gas radon monitoring, J. Radioanal. Nucl. Chem. 161, 2, 313–323, DOI: 10.1007/BF02040478.

  77. Toutain, J.P., and J.C. Baubron (1999), Gas geochemistry and seismotectonics: a review, Tectonophysics 304, 1–27, DOI: 10.1016/S0040-1951(98)00295-9.

  78. Toutain, J.P., M. Munoz, F. Poitrasson, and F. Lienard (1997), Springwater chloride ion anomaly prior to a ML = 5.2 Pyrenean earthquake, Earth Planet. Sci. Lett. 149, 113–119, DOI: 10.1016/S0012-821X(97)00066-6.

  79. Toutain, J.P., M. Munoz, J.L. Pinaud, S. Levet, M. Sylvander, A. Rigo, and J. Escalier (2006), Modelling the mixing function to constrain coseismic hydrochemical effects: An example from the French Pyrénées, Pure Appl. Geophys. 163, 4, 723–744, DOI: 10.1007/s00024-006-0047-9.

  80. Tsunogai, U., and H. Wakita (1995), Precursory chemical changes in ground water: Kobe earthquake, Japan, Science 269, 5220, 61–63, DOI: 10.1126/science.269.5220.61.

  81. Turcotte, D.L. (1991), Earthquake prediction, Ann. Rev. Earth Planet. Sci. 19, 263–281, DOI: 10.1146/annurev.ea.19.050191.001403.

  82. Uyeda, S., T. Nagao, and M. Kamogawa (2009), Short-term earthquake prediction: Current status of seismo-electromagnetics, Tectonophysics 470, 3–4, 205–213, DOI: 10.1016/j.tecto.2008.07.019.

  83. Wakita, H. (1996), Geochemical challenge to earthquake prediction, Proc. Nat. Acad. Sci. USA 93, 9, 3781–3786, DOI: 10.1073/pnas.93.9.3781.

  84. Wakita, H., Y. Nakamura, and Y. Sano (1988), Short-term and intermediate-term geochemical precursors, Pure Appl. Geophys. 125, 2–4, 267–278, DOI: 10.1007/BF00878999.

  85. Washington, J.W., and A.W. Rose (1990), Regional and temporal relations of radon in soil gas to soil temperature and moisture, Geophys. Res. Lett. 17, 6, 829–832, DOI: 10.1029/GL017i006p00829.

  86. Wattananikorn, K., M. Kanaree, and S. Wiboolsake (1998), Soil gas radon as an earthquake precursor: some considerations on data improvement, Radiat. Meas. 29, 6, 593–598, DOI: 10.1016/S1350-4487(98)00079-1.

  87. Winkler, R., F. Ruckerbauer, and K. Bunzl (2001), Radon concentration in soil gas: a comparison of the variability resulting from different methods, spatial heterogeneity and seasonal fluctuations, Sci. Total Environ. 272, 1–3, 273–282, DOI: 10.1016/S0048-9697(01)00704-5.

  88. Wyss, M. (ed.) (1991), Evaluation of Proposed Earthquake Precursors, American Geophys. Union, Washington, DC.

  89. Virk, H.S., and B. Singh (1993), Radon anomalies in soil gas and groundwater as earthquake precursor phenomena, Tectonophysics 227, 1–4, 215–224, DOI: 10.1016/0040-1951(93)90096-3.

  90. Zhao, D., H. Tani, and O.P. Mishra (2004), Crustal heterogeneity in the 2000 western Tottori earthquake region: effect of fluids from slab dehydration, Phys. Earth Planet. Int. 145, 1–4, 161–177, DOI: 10.1016/j.pepi.2004.03.009.

Download references

Author information

Correspondence to Sedat İnan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

İnan, S., Ertekin, K., Seyis, C. et al. Multi-disciplinary earthquake researches in Western Turkey: Hints to select sites to study geochemical transients associated to seismicity. Acta Geophys. 58, 767–813 (2010). https://doi.org/10.2478/s11600-010-0016-7

Download citation

Key words

  • seismically activated geochemical transients
  • geochemical monitoring sensitive sites
  • Aegean Extensional Province
  • Turkey