Advertisement

Acta Geophysica

, Volume 58, Issue 2, pp 356–373 | Cite as

Tidal waves in the atmosphere and their effects

  • Igor G. Zurbenko
  • Amy L. Potrzeba
Article

Abstract

A method of high resolution periodic signal reconstruction has been developed and implemented into software algorithms. This method, that utilizes a narrow band-pass filter, permits the detection of tidal waves in the atmosphere. Our paper describes and reviews the strength of this method, commonly referred to as the KZFT algorithm. The focus of this paper is given to the recovery of tides in the atmosphere as well as to a discussion of specifics of the reconstruction of these waves. We conclude with several examples regarding the impact of the tidal wave to other atmospheric variables, including wind speed and cloud cover, but details are left for further investigation.

Key words

tides in atmosphere Kolmogorov-Zurbenko Fourier Transform 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chapman, S. (1935), The lunar tide in the earth’s atmosphere, Proc. Roy. Soc. Lond. A, 151, 872, 105–117.CrossRefGoogle Scholar
  2. Chapman, S., and R.S. Lindzen (1970), Atmospheric Tides, Gordon and Breach, New York.Google Scholar
  3. Kim, K.O., H.S Lee, T. Yamashita, and B.H. Choi (2008), Wave and storm surge simulations for Hurricane Katrina using coupled process based models, KSCE J. Civ. Eng. 12, 1, 1–8, DOI: 10.1007/s12205-008-8001-2.CrossRefGoogle Scholar
  4. Madden, R.A., and P.R. Julian (1971), Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific, J. Atmos. Sci. 28, 702–708, DOI: 10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2.CrossRefGoogle Scholar
  5. Madden, R.A., and P.R. Julian (1994), Observations of the 40–50 day tropical oscillation — a review, Monthly Weath. Rev. 22, 814–837, DOI: 10.1175/1520-0493(1994)122<0814:OOTDTO>2.0.CO;2.CrossRefGoogle Scholar
  6. Morel, B., H. Bencherif, P. Keckhut, S. Baldy, and A. Hauchecorne (2002), Evidence of tidal perturbations in the middle atmosphere over Southern Tropics as deduced from LIDAR data analyses, J. Atmos. Sol.-Terr. Phys. 64, 1979–1988, DOI: 10.1016/S1364-6826(02)00223-7.CrossRefGoogle Scholar
  7. Neagu, R., and I. Zurbenko (2002), Tracking and separating non-stationary multicomponent chirp signal, J. Frankl. Inst. 339, 449–520, DOI: 10.1016/S0016-0032(02)00023-6.CrossRefGoogle Scholar
  8. Oberheide, J., Q. Wu, D.A. Ortland, T.L. Kilen, M.E. Hagan, R.G. Roble, R.J. Niciejewski, and W.R. Skinner (2005), Non-migrating diurnal tides as measured by the TIMED Doppler interferometer: Preliminary results, Adv. Space Res. 35, 1911–1917, DOI: 10.1016/j.asr.2005.01.063.CrossRefGoogle Scholar
  9. Potrzeba, A.L., I.G. Zurbenko (2008), Algorithm of periodic signal reconstruction with applications to tidal waves in atmosphere. In: JSM Proceedings, Poster topic engineering and physical sciences, chemometrics, American Statistical Association, Alexandria, VA.Google Scholar
  10. Rao, S.T., I.G. Zurbenko, R. Neagu, P.S. Porter, J.Y. Ku, and R.F. Henry (1997), Space and time scales in ambient ozone data, Bull. Am. Meteor. Soc. 78, 10, 2153–2166, 10.1175/1520-0477(1997)078<2153:SATSIA>2.0.CO;2.CrossRefGoogle Scholar
  11. Siebert, M. (1961), Atmospheric tides, In: H.E. Landsberg and J. van Mieghem (eds.), Advances in Geophysics 7, Academic Press, New York, 105–187.Google Scholar
  12. Tsakiri, K.G. and I.G. Zurbenko (2008), Destructive effect of the noise in principal component analysis with applications to ozone pollutions. In: JSM Proceedings, Statistical Computing Section, American Statistical Association, Alexandria, VA.Google Scholar
  13. Vial, F., and J.M. Forbes (1994), Monthly simulations of the lunar semi-diurnal tide, J. Atmos. Terr. Phys. 56, 1591–1607, DOI: 10.1016/0021-9169(94) 90089-2.CrossRefGoogle Scholar
  14. Wang, Z. and P.J. Vickery (2005), The integration of a hurricane wind hazard model with deep-water and near-shore wave models. In: OCEANS: Proceedings of MTS/IEEE 1, 337–344.Google Scholar
  15. Yang, W., and I.G. Zurbenko (2007), KZFT: Kolmogorov-Zurbenko Fourier Transform and Applications, R package Version 0.17.Google Scholar
  16. Yang W., and I.G. Zurbenko (2008), A semi-adaptive smoothing algorithm in bispectrum estimation, IEEE Trans. Signal Process. 56, 11, 5369–6375, DOI: 10.1109/TSP.2008.929131.CrossRefGoogle Scholar
  17. Yang, W., and I.G. Zurbenko (2010a), Nonstationarity, Wiley Interdiscipl. Reviews: Computational Statistics (to appear in 2010).Google Scholar
  18. Yang, W., and I.G. Zurbenko (2010b), Kolmogorov-Zurbenko filters, Wiley Interdiscipl. Reviews: Computational Statistics (to appear in 2010).Google Scholar
  19. Zurbenko, I.G. (1986), The Spectral Analysis of Time Series, North-Holland Amsterdam.Google Scholar
  20. Zurbenko, I.G., and P.S. Porter (1998), Construction of high-resolution wavelets, Signal Process. 65, 2, 315–327, DOI: 10.1016/S0165-1684(97)00226-0.CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Epidemiology and BiostatisticsUniversity at AlbanyAlbanyUSA
  2. 2.University at AlbanyAlbanyUSA

Personalised recommendations