Skip to main content
Log in

Relation between spring water radon anomalies and seismic activity in Garhwal Himalaya

  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

The variations of spring water radon concentration and meteorological parameters were analysed in relation to the seismic activities in Garhwal Himalaya, India. The radon anomalies were classified on the basis of statistical treatment of the daily observations. The precise measurements of water discharge rate from the spring have been made along with radon measurements for earthquake precursory study. The earthquakes with epicentral distances less than 150 km were considered by an empirical relationship. Pre-, co-, and post-seismic changes in the radon concentration were taken carefully into account in the empirical relationship to establish this behaviour as a potential earthquake precursor. The empirical relationship has been validated by the radon data recorded from the spring waters. The magnitudes of the earthquakes were estimated by using the empirical relationship by introducing computed correlation coefficient of radon and meteorological parameters. The calculated magnitude of some local earthquakes matches exactly with the magnitude recorded by the laboratory seismograph. The possible mechanisms that may cause a radon anomaly are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson, O.L., and P.C. Grew (1977), Stress corrosion theory of crack propagation with applications to geophysics, Rev. Geophys. 15, 1, 77–104, DOI: 10.1029/RG015i001p00077.

    Article  Google Scholar 

  • Andrews, J.N. (1977), Radiogenic and inert gases in groundwaters. In: H. Paquet and Y. Tardy (eds.), Proc. 2nd Int. Symp. Water Rock Interaction, Strasbourg, 334–342.

  • Burchfiel, B.C., Z. Chen, K.V. Hodges, Y. Liu, L.H. Royden, D. Changrong, and X. Jiene (1992), The South Tibetan Detachment System, Himalayan Orogen: Extension Contemporaneous with and Parallel to Shortening in a Collisional Mountain Belt, Geological Society of America, Boulder, CO.

    Google Scholar 

  • Burg, J.P. (1983), Tectonique comparée de deux segments de chaîne de collision: le sud du Tibet (suture du Tsangpo), la chaîne hercynienne en Europe (suture du Massif-Central), Ph.D. Thesis, Université du Montpellier, 450 pp.

  • Choubey, V.M., P.K. Mukherjee, and R.C. Ramola (2000), Levels of radon and water discharge in springs of Garhwal Himalaya before and after Chamoli earthquake, J. Earthq. Predic. Res. 10, 1–7.

    Google Scholar 

  • Cigolini, C., M. Laiolo, and D. Coppola (2007), Earthquake-volcano interactions detected from radon degassing at Stromboli (Italy), Earth Planet. Sc. Lett. 257, 3–4, 511–525, DOI: 10.1016/j.epsl.2007.03.022.

    Article  Google Scholar 

  • Dewey, J.F., and J.M. Bird (1970), Mountain belts and the new global tectonics, J. Geophys. Res. 75, 14, 2625–2647, DOI: 10.1029/JB075i014p02625.

    Article  Google Scholar 

  • Dobrovolsky, I.P., S.I. Zubkov, and V.I. Maichkin (1979), Estimation of the size of earthquake preparation zones, Pure Appl. Geophys. 117, 5, 1025–1044, DOI: 10.1007/BF00876083.

    Article  Google Scholar 

  • Gapais, D., A. Pêcher, E. Gilbert, and M. Ballèvre (1992), Synconvergence spreading of the higher Himalaya crystalline in Ladakh, Tectonics 11, 5, 1045–1056, DOI: 10.1029/92TC00819.

    Article  Google Scholar 

  • Gutenberg, B. (1956), The energy of earthquakes, Quart. J. Geol. Soc. London 112, 1–14.

    Article  Google Scholar 

  • Hagiwara, T. (1964), Brief description of the project proposed by the earthquake prediction research group of Japan. In: Proc. U.S.-Japan Conf. Res. Relat. Earthq. Prediction Probl. 10–12.

  • Hauksson, E., and J.G. Goddard (1981), Radon earthquake precursor studies in Iceland, J. Geophys. Res. 86, B8, 7037–7054, DOI: 10.1029/JB086iB08p07037.

    Article  Google Scholar 

  • Hill, D.P., F. Pollitz, and C. Newhall (2002), Earthquake-volcano interactions, Phys. Today 55, 11, 41–47, DOI: 10.1063/1.1535006.

    Article  Google Scholar 

  • İnan, S., T. Akgül, C. Seyis, R. Saatşılar, S. Baykut, S. Ergintav, and M. Baş (2008), Geochemical monitoring in the Marmara region (NW Turkey): A search for precursors of seismic activity, J. Geophys. Res. 113, B3, B03401. DOI: 10.1029/2007JB005206.

    Article  Google Scholar 

  • King, C.-Y. (1978), Radon emanation on San Andreas Fault, Nature 271, 5645, 516–519, DOI: 10.1038/271516a0.

    Article  Google Scholar 

  • Kumar, S., and T. Sato (2003), Compressional and shear wave velocities in the crust beneath the Garhwal Himalaya, North India, Himal. Geol. 24, 2, 77–85.

    Google Scholar 

  • Manga, M., and E. Brodsky (2006), Seismic triggering of eruptions in the far field: Volcanoes and geysers, Ann. Rev. Earth Planet. Sci. 34, 1, 263–291, DOI: 10.1146/annurev.earth.34.031405.125125.

    Article  Google Scholar 

  • Ramola, R.C., S. Singh, and H.S. Virk (1988), A model for the correlation between radon anomalies and magnitude of earthquakes, Nucl. Tracks Rad. Meas. 15, 1–4, 689–692, DOI: 10.1016/1359-0189(88)90229-4.

    Article  Google Scholar 

  • Ramola, R.C., M. Singh, A.S. Sandhu, S. Singh, and H.S. Virk (1990), The use of radon as an earthquake precursor, Nucl. Geophys. 4, 275–287.

    Google Scholar 

  • Ramola, R.C., Y. Prasad, G. Prasad, S. Kumar, and V.M. Choubey (2008), Soil-gas radon as seismotectonic indicator in Garhwal Himalaya, Appl. Radiat. Isotopes 66, 10, 1523–1530, DOI: 10.1016/j.apradiso.2008.04.006.

    Article  Google Scholar 

  • Scholz, C.H., L.R. Sykes, and Y.P. Aggarwal (1973), Earthquake prediction: A physical basis, Science 181, 4102, 803–810, DOI: 10.1126/science.181.4102.803.

    Article  Google Scholar 

  • Shapiro, M.H., J.D. Melvin, T.A. Tombrello, M.H. Mendenhall, P.B. Larson, and J.H. Whitcomb (1981), Relationship of the 1979 Southern California radon anomaly to a possible regional strain event, J. Geophys. Res. 86, B3, 1725–1730, DOI: 10.1029/JB086iB03p01725.

    Article  Google Scholar 

  • Shapiro, M.H., A. Rice, M.H. Mendenhall, J.D. Melvin, and T.A. Tombrello (1984), Recognition of environmentally caused variations in radon time series, Pure Appl. Geophys. 122, 2-4, 309–326, DOI: 10.1007/BF00874601.

    Article  Google Scholar 

  • Srivastava, P., and G. Mitra (1994), Thrust geometries and deep structure of the Outer and Lesser Himalaya, Kumaon and Garhwal (India): Implications for evolution of the Himalayan fold-and-thrust belt, Tectonics 13, 1, 89–109, DOI: 10.1029/93TC01130.

    Article  Google Scholar 

  • Teng, T.-L. (1980), Some recent studies on groundwater radon content as an earthquake precursor, J. Geophys. Res. 85, B6, 3089–3099, DOI: 10.1029/JB085iB06p03089.

    Article  Google Scholar 

  • Thorsteinsson, T. (1973), The redevelopment of the Reykir hydrothermal system in S.W. Iceland. In: Proc. 2nd U.N. Symp. Develop. and use of Geothermal Resources, U.S. Govt. Printing Office, Washington, D.C., 2173–2180.

    Google Scholar 

  • Valdiya, K.S. (1980), Geology of Kumaun Lesser Himalaya, Wadia Institute of Himalayan Geology Publ., Dehradun, 291 pp.

    Google Scholar 

  • Virk, H.S. A.K. Sharma, and V. Walia (1997), Correlation of alpha-logger radon data with microseismicity in N-W Himalaya, Current Science 72, 9, 656–663.

    Google Scholar 

  • Wakita, H. (1978), Earthquake prediction and geochemical studies in China, Chin. Geophys. 1, 443–457.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Chand Ramola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramola, R.C. Relation between spring water radon anomalies and seismic activity in Garhwal Himalaya. Acta Geophys. 58, 814–827 (2010). https://doi.org/10.2478/s11600-009-0047-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-009-0047-0

Key words

Navigation