Acta Geophysica

, Volume 57, Issue 4, pp 803–836 | Cite as

Large-eddy simulation of katabatic winds. Part 1: Comparison with observations

Article

Abstract

Steady-state quasi-one-dimensional large-eddy simulations of slope winds over simple terrain are presented. The model results of up-slope flow are compared to previous simulations by Schumann (1990), and good agreement is found. Modelled downslope winds are compared to meteorological observations from two glaciers. The vertical profiles of velocity and buoyancy agree with the observations, whereas larger discrepancies are found between the modelled and the observed momentum and buoyancy flux profiles. Despite some discrepancies, the model captures the main characteristics of the observed downslope winds fairly well. The numerical model is used in a companion paper (Part II) to study how some external input parameters affect katabatic winds.

Key words

katabatic winds large-eddy simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arritt, R.W., and R.A. Pielke (1986), Interactions of nocturnal slope flows with ambient winds, Bound.-Layer Meteor. 37, 1–2, 183–195, DOI: 10.1007/BF00122763.CrossRefGoogle Scholar
  2. Axelsen, S.L., and H. van Dop (2009), Large-eddy simulation of katabatic winds. Part 2: Sensitivity study and comparison with analytical models, Acta Geophys. 57, 4, 837-856, DOI: 10.2478/s11600-009-0042-5 (this issue).Google Scholar
  3. Basu, S., and F. Porté-Agel (2006), Large-eddy simulation of stably stratified atmospheric boundary layer turbulence: A scale-dependent dynamic modeling approach, J. Atmos. Sci. 63, 8, 2074-2091, DOI: 10.1175/JAS3734.1.CrossRefGoogle Scholar
  4. Beare, R.J., M.K. Macvean, A.A.M. Holtslag, J. Cuxart, I. Esau, J.-C. Golaz, M.A. Jimenez, M. Khairoutdinov, B. Kosovic, D. Lewellen, T.S. Lund, J.K. Lundquist, A. Mccabe, A.F. Moene, Y. Noh, S. Raasch, and P. Sullivan (2006), An intercomparison of large-eddy simulations of the stable boundary layer, Bound.-Layer Meteor. 118, 2, 247–272, DOI: 10.1007/s10546-004-2820-6.CrossRefGoogle Scholar
  5. Bromwich, D.H., J.J. Cassano, T. Klein, G. Heinemann, K.M. Hines, K. Steffen, and J.E. Box (2001), Mesoscale modeling of katabatic winds over Greenland with the polar MM5, Monthly Weath. Rev. 129, 9, 2290–2309, DOI: 10.1175/1520-0493(2001)129<2290:MMOKWO>2.0.CO;2.CrossRefGoogle Scholar
  6. Cuijpers, J.W.M. (1990), Subgrid parametrization in a large-eddy simulation model. In: Ninth Symp. on Turbulence and Diffusion, Amer. Meteor. Soc. Roskilde, Denmark, 176–179.Google Scholar
  7. Cuijpers, J.W.M. (1994), Large-eddy simulation of cumulus convection, Ph.D. Thesis, IMAU, Utrecht University.Google Scholar
  8. Cuijpers, J.W.M., and P.G. Duynkerke (1993), Large eddy simulation of trade wind cumulus clouds, J. Atmos. Sci. 50, 23, 3894–3908, DOI: 10.1175/1520-0469(1993)050<3894:LESOTW>2.0.CO;2.CrossRefGoogle Scholar
  9. Deardorff, J.W. (1980), Stratocumulus-capped mixed layers derived from a three-dimensional model, Bound.-Layer Meteor. 18, 4, 495–527, DOI: 10.1007/BF00119502.CrossRefGoogle Scholar
  10. Delage, Y. (1974), A numerical study of the nocturnal atmospheric boundary layer, Quart. J. Roy. Met. Soc. 100, 351–364, DOI: 10.1002/qj.49710042507.CrossRefGoogle Scholar
  11. Denby, B. (1999), Second-order modelling of turbulence in katabatic flows, Bound.-Layer Meteor. 92, 1, 65–98, DOI: 10.1023/A:1001796906927.CrossRefGoogle Scholar
  12. Denby, B., and W. Greuell (1999), The Use of Bulk and Profile Methods Under Conditions of Strong Katabatic Flow, Kluwer Academic Publishers.Google Scholar
  13. Doran, J.C., and T.W. Horst (1983), Observations and models of simple nocturnal slope flows, J. Atmos. Sci. 40, 3, 708–717, DOI: 10.1175/1520-0469(1983)040<0708:OAMOSN>2.0.CO;2.CrossRefGoogle Scholar
  14. Dyer, A.J. (1974), A review of flux-profile relationships, Bound.-Layer Meteor. 7, 3, 363–372, DOI: 10.1007/BF00240838.Google Scholar
  15. Fedorovich, E., and A. Shapiro (2009), Structure of numerically simulated katabatic and anabatic flows along steep slopes, Acta Geophys. 57, 4, 981–1010, DOI: 10.2478/ s11600-009-0027-4 (this issue).Google Scholar
  16. Foken, T. (2006), 50 years of the Monin-Obukhov similarity theory, Bound.-Layer Meteor. 119, 3, 431–447, DOI: 10.1007/s10546-006-9048-6.CrossRefGoogle Scholar
  17. Garratt, J.R. (1992), The Atmospheric Boundary Layer, Cambridge University Press, Cambridge, 316 pp.Google Scholar
  18. Geurts, B.J. (2004), Elements of Direct and Large-Eddy Simulation, Edwards, New York.Google Scholar
  19. Grachev, A.A., E.L. Andreas, C.W. Fairall, P.S. Guest, and P.O.G. Persson (2007), On the turbulent Prandtl number in the stable atmospheric boundary layer, Bound.-Layer Meteor. 125, 2, 329–341, DOI: 10.1007/s10546-007-9192-7.CrossRefGoogle Scholar
  20. Grisogono, B., and J. Oerlemans (2001a), Katabatic flow: Analytic solution for gradually varying eddy diffusivities, J. Atmos. Sci. 58, 21, 3349–3354, DOI: 10.1175/1520-0469(2001)058<3349:KFASFG>2.0.CO;2.CrossRefGoogle Scholar
  21. Grisogono, B., and J. Oerlemans (2001b), A theory for the estimation of surface fluxes in simple katabatic flows, Quart. J. Roy. Met. Soc. 127, 578, 2725–2739, DOI: 10.1002/qj.49712757811.CrossRefGoogle Scholar
  22. Grisogono, B., L. Kraljević, and A. Jeričević (2007), The low-level katabatic jet height versus Monin-Obukhov height, Quart. J. Roy. Met. Soc. 133, 629, 2133–2136, DOI: 10.1002/qj.190.Google Scholar
  23. Haiden, T., and C.D. Whiteman (2005), Katabatic flow mechanisms on a low-angle slope, J. Appl. Meteorol. 44, 1, 113–126, DOI: 10.1175/JAM-2182.1.CrossRefGoogle Scholar
  24. Horst, T.W., and J.C. Doran (1986), Nocturnal drainage flow on simple slopes, Bound.-Layer Meteor. 34, 3, 263–286, DOI: 10.1007/BF00122382.CrossRefGoogle Scholar
  25. Khairoutdinov, M.F., and D.A. Randall (2003), Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities, J. Atmos. Sci. 60, 4, 607–625, DOI: 10.1175/1520-0469(2003)060<0607:CRMOTA>2.0.CO;2.CrossRefGoogle Scholar
  26. Klein, T., G. Heinemann, D.H. Bromwich, J.J. Cassano, and K.M. Hines (2001), Mesoscale modeling of katabatic winds over Greenland and comparisons with AWS and aircraft data, Meteorol. Atmos. Phys. 78, 1–2, 115–132, DOI: 10.1007/s007030170010.CrossRefGoogle Scholar
  27. Kosović, B., and J.A. Curry (2000), A large eddy simulation study of a quasi-steady, stably stratified atmospheric boundary layer, J. Atmos. Sci. 57, 8, 1052–1068, DOI: 10.1175/1520-0469(2000)057<1052:ALESSO>2.0.CO;2.Google Scholar
  28. Lilly, D.K. (1968), Models of cloud-topped mixed layers under a strong inversion, Quart. J. Roy. Met. Soc. 94, 292–309, DOI: 10.1002/qj.49709440106.CrossRefGoogle Scholar
  29. Mahrt, L. (1982), Momentum balance of gravity flows, J. Atmos. Sci. 39, 12, 2701–2711, DOI: 10.1175/1520-0469(1982)039<2701:MBOGF>2.0.CO;2.Google Scholar
  30. Mahrt, L. (1998), Stratified atmospheric boundary layers and break-down of models, Theoret. Comput. Fluid Dyn. 11, 3–4, 263–279, DOI: 10.1007/ s001620050093.CrossRefGoogle Scholar
  31. Mahrt, L., and S. Larsen (1990), Relation of slope winds to the ambient flow over gentle terrain, Bound.-Layer Meteor. 53, 1–2, 93–102, DOI: 10.1007/BF00122465.CrossRefGoogle Scholar
  32. Mason, P.J., and S.H. Derbyshire (1990), Large-eddy simulation of the stably-stratified atmospheric boundary layer, Bound.-Layer Meteor. 53, 1–2, 117–162, DOI: 10.1007/BF00122467.CrossRefGoogle Scholar
  33. Monti, P., H.J.S. Fernando, M. Princevac, W.C. Chan, T.A. Kowalewski, and E.R. Pardyjak (2002), Observations of flow and turbulence in the nocturnal boundary layer over a slope, J. Atmos. Sci. 59, 17, 2513–2534, DOI: 10.1175/1520-0469(2002)059<2513:OOFATI>2.0.CO;2.CrossRefGoogle Scholar
  34. Nappo, C.J., and K. Rao (1987), A model study of pure katabatic flows, Tellus 39A, 61–71.CrossRefGoogle Scholar
  35. Nieuwstadt, F.T.M. (1984), The turbulent structure of the stable nocturnal boundary layer, J. Atmos. Sci. 41, 14, 2202–2216, DOI: 10.1175/1520-0469(1984)041<2202:TTSOTS>2.0.CO;2.CrossRefGoogle Scholar
  36. Oerlemans, J. (1998), The atmospheric boundary layer over melting glaciers, In: A.A.M. Holtslag, P.G. Duynkerke, and P.J. Jonker (eds.), Clear and Cloudy Boundary Layers, Royal Netherlands Academy of Arts and Sciences, Ch. 6, 129–153.Google Scholar
  37. Oerlemans, J., H. Björnsson, M. Kuhn, F. Obleitner, F. Palsson, C.J.P.P. Smeets, H.F. Vugts, and J. De Wolde (1999), Glacio-meteorological investigations on Vatnajökull, Iceland, summer 1996: An overview, Bound.-Layer Meteor. 92, 1, 3–24, DOI: 10.1023/A:1001856114941.CrossRefGoogle Scholar
  38. Parish, T.R. (1984), A numerical study of strong katabatic winds over Antarctica, Monthly Weath. Rev. 112, 3, 545–554, DOI: 10.1175/1520-0493(1984)112<0545:ANSOSK>2.0.CO;2.CrossRefGoogle Scholar
  39. Parmhed, O., J. Oerlemans, and B. Grisogono (2004), Describing surface fluxes in katabatic flow on Breidamerkurjökull, Iceland, Quart. J. Roy. Met. Soc. 130, 598, 1137–1151, DOI: 10.1256/qj.03.52.Google Scholar
  40. Pettré, P., M.F. Renaud, R. Renaud, M. Déqué, S. Planton, and J.C. André (1990), Study of the influence of katabatic flows on the Antarctic circulation using GCM simulations, Meteorol. Atmos. Phys. 43, 1–4, 187–195, DOI: 10.1007/BF01028121.CrossRefGoogle Scholar
  41. Pope, S.B. (2000), Turbulent Flows, Cambridge University Press, Cambridge, UK.Google Scholar
  42. Prandtl, L. (1942), Führer durch die Strömungslehre, Vieweg u. Sohn, Braunschweig.Google Scholar
  43. Raasch, S., and D. Etling (1991), Numerical simulation of rotating turbulent thermal convection, Beitr. Phys. Atmos. 64, 3, 185–199.Google Scholar
  44. Rao, K.S., and H.F. Snodgrass (1981), A nonstationary nocturnal drainage flow model, Bound.-Layer Meteor. 20, 3, 309–320, DOI: 10.1007/BF00121375.CrossRefGoogle Scholar
  45. Schumann, U. (1990), Large-eddy simulation of the up-slope boundary layer, Quart. J. Roy. Met. Soc. 116, 493, 637–670, DOI: 10.1002/qj.49711649307.CrossRefGoogle Scholar
  46. Shapiro, A., and E. Fedorovich (2008), Coriolis effects in homogeneous and inhomogeneous katabatic flows, Quart. J. Roy. Met. Soc. 134, 631, 353–370, DOI: 10.1002/qj.217.CrossRefGoogle Scholar
  47. Skyllingstad, E.D. (2003), Large-eddy simulation of katabatic flows, Bound.-Layer Meteor. 106, 2, 217–243, DOI: 10.1023/A:1021142828676.CrossRefGoogle Scholar
  48. Smeets, C.J.P.P., P.G. Duynkerke, and H.F. Vugts (1998), Turbulence characteristics of the stable boundary layer over a mid-latitude glacier. Part I: A combination of katabatic and large scale forcing, Bound.-Layer Meteor. 87, 1, 117–145, DOI: 10.1023/A:1000860406093.CrossRefGoogle Scholar
  49. Smith, C.M., and E.D. Skyllingstad (2005), Numerical simulation of katabatic flow with changing slope angle, Monthly Weath. Rev. 133, 11, 3065–3080, DOI: 10.1175/MWR2982.1.CrossRefGoogle Scholar
  50. Söderberg, S., and O. Parmhed (2006), Numerical modelling of katabatic flow over a melting outflow glacier, Bound.-Layer Meteor. 120, 3, 509–534, DOI: 10.1007/s10546-006-9059-3.CrossRefGoogle Scholar
  51. Van den Broeke, M.R. (1997), Momentum, heat, and moisture budgets of the katabatic wind layer over a midlatitude glacier in summer, J. Appl. Meteorol. 36, 6, 763–774, DOI: 10.1175/1520-0450(1997)036<0763:MHAMBO>2.0.CO;2.Google Scholar
  52. Van der Avoird, E., and P.G. Duynkerke (1999), Turbulence in a katabatic flow. Does it resemble turbulence in stable boundary layers over flat surfaces? Bound.-Layer Meteor. 92, 1, 39–66, DOI: 10.1023/A:1001744822857.Google Scholar
  53. Van Dop, H., and S.L. Axelsen (2007), Large eddy simulation of the stable boundary-layer: A retrospect to Nieuwstadt's early work, Flow Turb. Combust. 79, 3, 235–249. DOI: 10.1007/s10494-007-9093-3.CrossRefGoogle Scholar
  54. Van Lipzig, N.P.M., E. van Meijgaard, and J. Oerlemans (1999), Evaluation of a regional atmospheric model using measurements of surface heat exchange processes from a site in Antarctica, Monthly Weath. Rev. 127, 9, 1994–2011, DOI: 10.1175/1520-0493(1999)127<1994:EOARAM>2.0.CO;2.Google Scholar
  55. Whiteman, C.D., and S. Zhong (2008), Downslope flows on a low-angle slope and their interactions with valley inversions. Part I: Observations, J. Appl. Meteorol. Clim. 47, 7, 2023–2038, DOI: 10.1175/2007JAMC1669.1.CrossRefGoogle Scholar
  56. Wicker, L.J., and W.C. Skamarock (2002), Time-splitting methods for elastic models using forward time schemes, Monthly Weath. Rev. 130, 8, 2088–2097, DOI: 10.1175/1520-0493(2002)130<2088:TSMFEM>2.0.CO;2.CrossRefGoogle Scholar
  57. Wyngaard, J.C. (2004), Toward numerical modelling in the “Terra Incognita”, J. Atmos. Sci. 61, 14, 1816–1826, DOI: 10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2.CrossRefGoogle Scholar
  58. Yamada, T. (1983), Simulations of nocturnal drainage flows by a q2l turbulence closure model, J. Atmos. Sci. 40, 91–106, DOI: 10.1175/1520-0469(1983)040<0091:SONDFB>2.0.CO;2.CrossRefGoogle Scholar
  59. Zhong, S., and C.D. Whiteman (2008), Downslope flows on a low-angle slope and their interactions with valley inversions. Part II: Numerical modelling, J. Appl. Meteorol. Clim. 47, 7, 2039–2057, DOI: 10.1175/2007JAMC1670.1.Google Scholar
  60. Zilitinkevich, S. S., and I.N. Esau (2007), Similarity theory and calculation of turbulent fluxes at the surface for the stably stratified atmospheric boundary layer, Bound.-Layer Meteor. 125, 193–205, DOI: 10.1007/s10546-007-9187-4.CrossRefGoogle Scholar
  61. Zilitinkevich, S.S., T. Elperin, N. Kleeorin, and I. Rogachevskii (2007), Energy- and flux-budget (EFB) turbulence closure model for stably stratified flows. Part I: Steady-state, homogeneous regimes, Bound.-Layer Meteor. 125, 2, 167–191, DOI: 10.1007/s10546-007-9189-2.Google Scholar
  62. Zilitinkevich, S.S., T. Elperin, N. Kleeorin, I. Rogachevskii, I.N. Esau, T. Mauritsen, and M.W. Miles (2008), Turbulence energetics in stably stratified geophysical flows: Strong and weak mixing regimes, Quart. J. Roy. Met. Soc. 134, 633, 793–799, DOI: 10.1002/qj.264.CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.IMAU, Utrecht UniversityUtrechtThe Netherlands

Personalised recommendations