Acta Geophysica

, Volume 57, Issue 4, pp 904–922 | Cite as

A preliminary investigation of boundary layer effects on daytime atmospheric CO2 concentrations at a mountaintop location in the Rocky Mountains

  • Stephan F.J. De Wekker
  • Alex Ameen
  • Guan Song
  • Britton B. Stephens
  • Anna G. Hallar
  • Ian B. McCubbin
Article

Abstract

Observations of CO2 concentration at a mountaintop in the Colorado Rockies in summer show a large diurnal variability with minimum CO2 concentrations found between 10:00 and 18:00 MST. Simulations are performed with a mesoscale model to examine the effects of atmospheric structure and large-scale flows on the diurnal variability. In the simulations initialized without large-scale winds, the CO2 minimum occurs earlier compared to the observations. Upslope flows play an important role in the presence of this early (pre-noon) minimum while the timing and magnitude of the minimum depend only weakly on the temperature structure. An increase in large-scale flow has a noticeable impact on the diurnal variability with a more gradual decrease in daytime CO2 concentration, similar to summer-averaged observations. From the idealized simulations and a case study, it is concluded that multi-scale flows and their interactions have a large influence on the observed diurnal variability.

Key words

mesoscale circulations atmospheric boundary layer complex terrain CO2 concentration mountaintop observatory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bakwin, P.S., P.P. Tans, D.F. Hurst, and C. Zhao (1998), Measurements of carbon dioxide on very tall towers: Results of the NOAA/CMDL program, Tellus B 50, 401–415, DOI: 10.1034/j.1600-0889.1998.t01-4-00001.x.CrossRefGoogle Scholar
  2. Bakwin, P.S., K.J. Davis, C. Yi, S.C. Wofsy, J.W. Munger, L. Haszpra, and Z. Barcza (2004), Regional carbon dioxide fluxes from mixing ratio data, Tellus B 56, 301–311, DOI: 10.1111/j.1600-0889.2004.00111.x.CrossRefGoogle Scholar
  3. Baltensperger, U., H.W. Gaggeler, D.T. Jost, M. Lugauer, M. Schwikowski, E. Weingartner, and P. Seibert (1997), Aerosol climatology at the highalpine site Jungfraujoch, Switzerland. J. Geophys. Res. 102, 19707–19715, DOI: 10.1029/97JD00928.CrossRefGoogle Scholar
  4. Borys, R.D., and M.A. Wetzel (1997), Storm Peak Laboratory: a research, teaching and service facility for the atmospheric sciences, Bull. Am. Meteor. Soc. 78, 2115–2123, DOI: 10.1175/1520-0477(1997)078<2115:SPLART>2.0.CO;2.CrossRefGoogle Scholar
  5. Cotton, W.R., R.A. Pielke Sr., R.L. Walko, G.E. Liston, C.J. Tremback, H. Jiang, R.L. McAnelly, J.Y. Harrington, M.E. Nicholls, G.G. Carrio, and J.P. McFadden (2003), RAMS 2001: Current status and future directions, Meteorol. Atmos. Phys. 82, 5–29, DOI: 10.1007/s00703-001-0584-9.CrossRefGoogle Scholar
  6. De Wekker, S.F.J., D.G. Steyn, and S. Nyeki, (2004), A comparison of aerosol layer- and convective boundary layer structure over a mountain range during STAAARTE'97, Bound.-Layer Meteor. 113, 249–271, DOI: 10.1023/B:BOUN.0000039371.41823.37.CrossRefGoogle Scholar
  7. Fiedler, F., I. Bischoff-Gauβ, N. Kalthoff, and G. Adrian (2000), Modeling of the transport and diffusion of a tracer in the Freiburg-Schauinsland area, J. Geophys. Res. 105, D1, 1599–1610, DOI: 10.1029/1999JD900911.CrossRefGoogle Scholar
  8. Gloor, M., P. Bakwin, D. Hurst, L. Lock, R. Draxler, and P. Tans (2001), What is the concentration footprint of a tall tower?, J. Geophys. Res. 106, D16, 17831–17840, DOI: 10.1029/2001JD900021.CrossRefGoogle Scholar
  9. Helliker, B.R., J.A. Berry, A.K. Betts, P.S. Bakwin, K.J. Davis, A.S. Denning, J.R. Ehleringer, J.B. Miller, M.P. Butler, and D.M. Ricciuto (2004), Estimates of net CO2 flux by application of equilibrium boundary layer concepts to CO2 and water vapor measurements from a tall tower, J. Geophys. Res. 109, D20, 1–13, DOI: 10.1029/2004JD004532.CrossRefGoogle Scholar
  10. Hindman, E.E., M.A. Campbell, and R.D. Borys (1994), A ten-winter record of cloud-droplet physical and chemical properties at a mountaintop site in Colorado, J. Appl. Meteor. 33, 797–807, DOI: 10.1175/1520-0450(1994)033<0797:ATWROC>2.0.CO;2.CrossRefGoogle Scholar
  11. Holzworth, G.C. (1964), Estimates of mean maximum mixing depths in the contiguous united states. Monthly Weath. Rev. 92, 235–242, DOI: 10.1175/1520-0493(1964)092<0235:EOMMMD>2.3.CO;2.CrossRefGoogle Scholar
  12. Keeling, C.D., R.B. Bacastow, A.E. Bainbridge, C.A. Jr. Ekdahl, P.R. Guenther, L.S. Waterman, and J.F.S. Chin (1976), Atmospheric carbon-dioxide variations at Mauna-Loa Observatory, Hawaii, Tellus 28, 6, 538-551.Google Scholar
  13. Lagouvardos, K., V. Kotroni, and G. Kallos (1996), Exploring the effects of different types of model initialisation: Simulation of a severe air-pollution episode in Athens, Greece, Meteorol. Appl. 3, 147–155.Google Scholar
  14. Law, R.M., W. Peters, C. Rödenbeck, C. Aulagnier, I. Baker, D.J. Bergmann, P. Bousquet, J. Brandt, L. Bruhwiler, P.J. Cameron-Smith, J.H. Christensen, F. Delage, A.S. Denning, S. Fan, C. Geels, S. Houweling, R. Imasu, U. Karstens, S.R. Kawa, J. Kleist, M.C. Krol, S.-J. Lin, R. Lokupitiya, T. Maki, S. Maksyutov, Y. Niwa, R. Onishi, N. Parazoo, P. K. Patra, G. Pieterse, L. Rivier, M. Satoh, S. Serrar, S. Taguchi, M. Takigawa, R. Vautard, A. T. Vermeulen, and Z. Zhu (2008), TransCom model simulations of hourly atmospheric CO2: Experimental overview and diurnal cycle results for 2002, Global Biogeochem. Cycles 22, GB3009, DOI: 10.1029/2007GB003050.CrossRefGoogle Scholar
  15. Lowenthal, D.H., R.D. Borys, and M.A. Wetzel (2002), Aerosol distributions and cloud interactions at a mountaintop laboratory, J. Geophys. Res. 107, D18, 4345, DOI: 10.1029/2001JD002046.CrossRefGoogle Scholar
  16. Lugauer, M., U. Baltensperger, M. Furger, H.W. Gaggeler, D.T. Jost, M. Schwikowski, and H. Wanner (1998), Aerosol transport to the high Alpine sites Jungfraujoch (3454 m asl) and Colle Gnifetti (4452 m asl), Tellus B 50, 76–92, DOI: 10.1034/j.1600-0889.1998.00006.x.CrossRefGoogle Scholar
  17. Monson, R.K., A.A. Turnipseed, J.P. Sparks, P.C. Harley, L.E. Scott-Denton, K.L. Sparks, and T.E. Huxman (2002), Carbon sequestration in a high-elevation, subalpine forest, Global Change Biology 8, 459–478, DOI: 10.1046/j.1365-2486.2002.00480.x.CrossRefGoogle Scholar
  18. Obrist D, A.G. Hallar, I. McCubbin, B.B. Stephens, and T. Rahn (2008), Measurements of atmospheric mercury at Storm Peak Laboratory in the Rocky Mountains: Evidence for long-range transport from Asia, boundary layer contributions, and plant mercury uptake, Atmos. Environ. 42, 7579–7589, DOI: 10.1016/j.atmosenv.2008.06.051.CrossRefGoogle Scholar
  19. Pales, J.C. and C.D. Keeling, (1965), The concentration of atmospheric carbon dioxide in Hawaii, J. Geophys. Res. 70, 6053–6076, DOI: 10.1029/JZ070i024p06053.CrossRefGoogle Scholar
  20. Pielke, R.A., W.R. Cotton, R.L. Walko, C.J. Tremback, W.A. Lyons, L.D. Grasso, M.E. Nicholls, M.D. Moran, D.A. Wesley, T.J. Lee, and J.H. Copeland (1992), A comprehensive meteorological modeling system-RAMS, Meteor. Atmos. Phys. 49, 69–91, DOI: 10.1007/BF01025401.CrossRefGoogle Scholar
  21. Seibert, P., H. Kromp-Kolb, A. Kasper, M. Kalina, H. Puxbaum, D.T. Jost, M. Schwikowski, and U. Baltensperger (1998), Tranport of polluted boundary layer air from the Po Valley to high-alpine sites, Atmos. Environ. 32, 3953–3965, DOI: 10.1016/S1352-2310(97)00174-X.CrossRefGoogle Scholar
  22. Stephens B., A. Watt, G. Maclean (2006), An autonomous inexpensive robust CO2 analyzer (AIRCOA). In: Thirteenth WMO/IAEA Meeting of Experts on Carbon Dioxide Concentration and Related Tracer Measurement Techniques, WMO TD 1359, pp. 95–99, http://www.wmo.int/pages/prog/arep/gaw/documents/gaw168.pdf.
  23. Sun, J., S.P. Oncley, S.P. Burns, B.B. Stephens, D.H. Lenschow, T. Campos, R.K. Monson, D.S. Schimel, W.J. Sacks, S.F.J. De Wekker, C. Lai, B. Lamb, D. Ojima, P.Z. Ellsworth, L.S.L. Sternberg, S. Zhong, C. Clements, D.J.P. Moore, D.E. Anderson, A.S. Watt, J. Hu, M. Tschudi, S. Aulenbach, E. Allwine, and T. Coons (2009), A multi-scale and multidiscplinary investigation of ecosystem-atmosphere CO2 exchange over the Rocky Mountains of Colorado, Bull. Am. Meteor. Soc. (in press).Google Scholar
  24. Thoning, K.W., P.P. Tans, and W.D. Komhyr (1989), Atmospheric carbon dioxide at Mauna Loa Observatory. 2: Analysis of the NOAA/GMCC data, 1974–1985, J. Geophys. Res. 94, 8549–8565, DOI: 10.1029/JD094iD06p08549.CrossRefGoogle Scholar
  25. Walko, R.L., L.E. Band, J. Baron, T.G.F. Kittel, R. Lammers, T.J. Lee, D. Ojima, R.A. Pielke Sr., C. Taylor, C. Tague, C.J. Tremback, and P.L. Vidale (2000), Coupled atmosphere-biophysics-hydrology models for environmental modeling, J. Appl. Meteor. 39, 931–944, DOI: 10.1175/1520-0450(2000)039<0931:CABHMF>2.0.CO;2.CrossRefGoogle Scholar
  26. Walko, R.L., C.J. Tremback, and M.J Bell (2001), HYPACT. Hybrid particle and concentration transport model. User's guide, 35 pp. (available from ASTER Division, Mission Research Corporation, P.O. Box 466, Fort Collins, CO 80525-0466).Google Scholar
  27. Watson, J.G., D. Blumenthal, J. Chow, C. Cahill, L.W. Richards, D. Dietrich, R. Morris, J. Houck, R.J. Dickson, and S. Andersen (1996), Mt. Zirkel wilderness area reasonable attribution study of visibility impairment. Vol. II: Results of data analysis and modelling. Part 1: Final Report, July 1, prepared for Technical Steering Committee c/o Colorado Department of Public Health and Environment, Air Pollution Control Division, Denver, CO.Google Scholar
  28. Weiss-Penzias, P., D.A. Jaffe, P. Swartzendruber, J.B. Dennison, D. Chand, W. Hafner, and E. Prestbo, (2006), Observations of Asian air pollution in the free troposphere at Mount Bachelor Observatory during the spring of 2004. J. Geophys. Res. 111, D10304, DOI: 10.1029/2005JD006522.CrossRefGoogle Scholar
  29. Whiteman, C.D. (1982), Breakup of temperature inversions in deep mountain valleys. Part I. Observations, J. Appl. Meteor. 21, 270–289, DOI: 10.1175/1520-0450(1982)021<0270:BOTIID>2.0.CO;2.CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Stephan F.J. De Wekker
    • 1
  • Alex Ameen
    • 1
  • Guan Song
    • 1
  • Britton B. Stephens
    • 2
  • Anna G. Hallar
    • 3
  • Ian B. McCubbin
    • 3
  1. 1.Department of Environmental SciencesUniversity of VirginiaCharlottesvilleUSA
  2. 2.National Center for Atmospheric ResearchBoulderUSA
  3. 3.Storm Peak LaboratoryDesert Research InstituteSteamboat SpringsUSA

Personalised recommendations