Acta Geophysica

, Volume 57, Issue 4, pp 857–881 | Cite as

Estimation of orographically induced wave drag in the stable boundary layer during the CASES-99 experimental campaign

  • Gert-Jan Steeneveld
  • Carmen J. Nappo
  • Albert A.M. Holtslag


This paper addresses the quantification of gravity wave drag due to small hills in the stable boundary layer. A single column atmospheric model is used to forecast wind and temperature profiles in the boundary layer. Next, these profiles are used to calculate vertical profiles of gravity wave drag. Climatology of wave drag magnitude and “wave drag events” is presented for the CASES-99 experimental campaign. It is found that gravity wave drag events occur for several relatively calm nights, and that the wave drag is then of equivalent magnitude as the turbulent drag. We also illustrate that wave drag events modify the wind speed sufficiently to substantially change the surface sensible heat flux.

Key words

stable boundary layer wave drag orography CASES-99 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreas, E.L. (2002), Parameterizing scalar transfer over snow and ice: A review, J. Hydrometeorol. 3, 4, 417–432, DOI: 10.1175/1525-7541(2002)003<0417: PSTOSA>2.0.CO;2.CrossRefGoogle Scholar
  2. Acevedo, O.C., and D.R. Fitzjarrald (2003), In the core of the night-effects of intermittent mixing on a horizontally heterogeneous surface, Bound.-Layer Meteor. 106, 1, 1–33, DOI: 10.1023/A:1020824109575.CrossRefGoogle Scholar
  3. Baas, P., G.J. Steeneveld, B.J.H. van de Wiel, and A.A.M. Holtslag (2006), Exploring self-correlation in flux-gradient relationships for stably stratified conditions, J. Atmos. Sci. 63, 11, 3045–3054, DOI: 10.1175/JAS3778.1.CrossRefGoogle Scholar
  4. Baas, P., F.C. Bosveld, H. Klein Baltink, and A.A.M. Holtslag (2009), A climatology of nocturnal low-level jets at Cabauw, J. Appl. Meteorol. Clim., DOI: 10.1175/2009JAMC1965.1.Google Scholar
  5. Beare, R.J., M.K. MacVean, A.A.M. Holtslag, J. Cuxart, I. Esau, J.-C. Golaz, M.A. Jimenez, M. Khairoutdinov, B. Kosovic, D. Lewellen, T.S. Lund, J.K. Lundquist, A. McCabe, A.F. Moene, Y. Noh, S. Raasch, and P. Sullivan (2006), An intercomparison of Large-Eddy Simulations of the stable boundary layer, Bound.-Layer Meteor. 118, 2, 247–272, DOI: 10.1007/s10546-004-2820-6.CrossRefGoogle Scholar
  6. Bechtold, P., M. Köhler, T. Jung, F. Doblas-Reyes, M. Leutbecher, M.J. Rodwell, F. Vitart, and G. Balsamo (2008), Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales, Quart. J. Roy. Met. Soc. 134, 634, 1337–1351, DOI: 10.1002/qj.289.CrossRefGoogle Scholar
  7. Belcher, S.E., and N. Wood (1996), Form and wave drag due to stably stratified turbulent flow over low ridges, Quart. J. Roy. Met. Soc. 122, 532, 863–902, DOI: 10.1002/qj.49712253205.CrossRefGoogle Scholar
  8. Beljaars, A.C.M., and A.A.M. Holtslag (1991), Flux parameterization over land surfaces for atmospheric models, J. Appl. Meteorol. 30, 3, 327–341, DOI: 10.1175/1520-0450(1991)030<0327:FPOLSF>2.0.CO;2.CrossRefGoogle Scholar
  9. Böing, S. (2009), Intermittent turbulence in stratified flow over a porous canopy, MSc Thesis, Utrecht University, Utrecht, 68 pp.Google Scholar
  10. Bosveld, F.C., E.I.F. de Bruijn, and A.A.M. Holtslag (2008), Intercomparison of single-column models for GABLS3 — preliminary results. In: Proc. 18th Symposium on Boundary Layer and Turbulence, 9–13 June 2008, Stockholm, paper 8A.5.Google Scholar
  11. Bravo, M., T. Mira, M.R. Soler, and J. Cuxart (2008), Intercomparison and evaluation of MM5 and Meso-NH mesoscale models in the stable boundary layer, Bound.-Layer Meteor. 128, 1, 77–101, DOI: 10.1007/s10546-008-9269-y.CrossRefGoogle Scholar
  12. Brown, A.R., and N. Wood (2003), Properties and parameterization of the stable boundary layer over moderate topography, J. Atmos. Sci. 60, 22, 2797–2808, DOI: 10.1175/1520-0469(2003)060<2797:PAPOTS>2.0.CO;2.CrossRefGoogle Scholar
  13. Brown, A.R., M. Athanassiadou, and N. Wood (2003), Topographically induced waves within the stable boundary layer, Quart. J. Roy. Met. Soc. 129, 595, 3357–3370, DOI: 10.1256/qj.02.176.CrossRefGoogle Scholar
  14. Businger, J.A. (1973), Turbulent transfer in the atmospheric surface layer. In: D.A. Haugen (ed.), Workshop on the Planetary Boundary Layer, Amer. Meteor. Soc., 67–98.Google Scholar
  15. Chenge, Y., and W. Brutsaert (2005), Flux-profile relationships for wind speed and temperature in the stable atmospheric boundary layer, Bound.-Layer Meteor. 114, 3, 519–538, DOI: 10.1007/s10546-004-1425-4.CrossRefGoogle Scholar
  16. Chimonas, G., and C.J. Nappo (1989), Wave drag in the planetary boundary layer over complex terrain, Bound.-Layer Meteor. 47, 1–4, 217-232, DOI: 10.1007/BF00122330.CrossRefGoogle Scholar
  17. Cupido, D. (2002), Estimation of Surface Energy Fluxes from Single-Level Weather Data for the Wageningen Weather Station, Wageningen University, Wageningen, The Netherlands, 52 pp.Google Scholar
  18. Cuxart, J., A.A.M. Holtslag, R.J. Beare, E. Bazile, A.C.M. Beljaars, A. Cheng, L. Conangla, M. Ek, F. Freedman, R. Hamdi, A. Kerstein, H. Kitagawa, G. Lenderink, D. Lewellen, J. Mailhot, T. Mauritsen, V. Perov, G. Schayes, G.-J. Steeneveld, G. Svensson, P.A. Taylor, W. Weng, S. Wunsch, and K.M. Xu (2006), Single-column model intercomparison for a stably stratified atmospheric boundary layer, Bound.-Layer Meteor. 118, 2, 273–303, DOI: 10.1007/s10546-005-3780-1.CrossRefGoogle Scholar
  19. Delage, Y., P.A. Barlett, and J.H. McCaughey (2002), Study of 'soft’ night-time surface-layer decoupling over forest canopies in a land-surface model, Bound.-Layer Meteor. 103, 2, 253–276, DOI: 10.1023/A:1017443021557.CrossRefGoogle Scholar
  20. Dethloff, K., C. Abegg, A. Rinke, I. Hebestadt, and V.F. Romanov (2001), Sensitivity of Arctic climate simulations to different boundary-layer parameterizations in a regional climate model, Tellus 53A, 1–26.Google Scholar
  21. Drüe, C., and G. Heinemann (2007), Characteristics of intermittent turbulence in the upper stable boundary layer over Greenland, Bound.-Layer Meteor. 124, 3, 361–381, DOI: 10.1007/s10546-007-9175-8.CrossRefGoogle Scholar
  22. Duynkerke, P.G. (1991), Radiation fog: A comparison of model simulation with detailed observations, Monthly Weath. Rev. 119, 2, 324–341, DOI: 10.1175/1520-0493(1991)119<0324:RFACOM>2.0.CO;2.CrossRefGoogle Scholar
  23. Duynkerke, P.G. (1999), Turbulence, radiation and fog in Dutch stable boundary layers, Bound.-Layer Meteor. 90, 3, 447–477, DOI:10.1023/A:1026441904734.CrossRefGoogle Scholar
  24. Einaudi, F., and J.J. Finnigan (1981), The interaction between an internal gravity wave and the planetary boundary layer. Part I: The linear analysis, Quart. J. Roy. Met. Soc. 107, 454, 793–806, DOI: 10.1256/smsqj.45403.CrossRefGoogle Scholar
  25. Estournel, C., and D. Guedalia (1985), Influence of geostrophic wind on atmospheric nocturnal cooling, J. Atmos. Sci. 42, 23, 2695–2698, DOI: 10.1175/1520-0469(1985)042<2695:IOGWOA>2.0.CO;2.CrossRefGoogle Scholar
  26. Finnigan, J. (1999), A note on wave-turbulence interaction and the possibility of scaling the very stable boundary layer, Bound.-Layer Meteor. 90, 3, 529–539, DOI: 10.1023/A:1001756912935.CrossRefGoogle Scholar
  27. Garratt, J.R., and R.A. Brost (1981), Radiative cooling effects within and above the nocturnal boundary layer, J. Atmos. Sci. 38, 12, 2730–2746, DOI: 10.1175/1520-0469(1981)038<2730:RCEWAA>2.0.CO;2.CrossRefGoogle Scholar
  28. Hoch, S.W., P. Calanca, R. Philipona, and A. Ohmura (2007), Year-round observation of longwave radiative flux divergence in Greenland, J. Appl. Meteorol. Clim. 46, 9, 1469–1479, DOI: 10.1175/JAM2542.1.CrossRefGoogle Scholar
  29. Holtslag, A.A.M., G.J. Steeneveld, and B.J.H. van de Wiel (2007), Role of landsurface temperature feedback on model performance for the stable boundary layer, Bound.-Layer. Meteor. 125, 2, 361–376, DOI: 10.1007/s10546-007-9214-5.CrossRefGoogle Scholar
  30. Klipp, C.L., and L. Mahrt (2004), Flux-gradient relationship, self-correlation and intermittency in the stable boundary layer, Quart. J. Roy. Met. Soc. 130, 601, 2087–2103, DOI: 10.1256/qj.03.161.CrossRefGoogle Scholar
  31. Kurzeja, R.J., S. Berman and A.H. Weber (1991), A climatological study of the nocturnal planetary boundary layer, Bound.-Layer Meteor. 54, 1–2, 105–128, DOI: 10.1007/BF00119415.CrossRefGoogle Scholar
  32. Mahrt, L. (1989), Intermittent of atmospheric turbulence, J. Atmos. Sci. 46, 1, 79–95, DOI: 10.1175/1520-0469(1989)046<0079:IOAT>2.0.CO;2.CrossRefGoogle Scholar
  33. Mahrt, L. (2009), Characteristics of submeso winds in the stable boundary layer, Bound.-Layer Meteor. 130, 1, 1–14, DOI: 10.1007/s10546-008-9336-4.CrossRefGoogle Scholar
  34. Mauritsen, T., G. Svensson, and B. Grisogono (2005), Wave flow simulations over Arctic leads, Bound.-Layer Meteor. 117, 2, 259–273, DOI: 10.1007/s10546-004-1427-2.CrossRefGoogle Scholar
  35. McCabe, A. and A.R. Brown (2007), The role of surface heterogeneity in modelling the stable boundary layer, Bound.-Layer Meteor. 122, 3, 517–534, DOI: 10.1007/s10546-006-9119-8.CrossRefGoogle Scholar
  36. Nappo, C.J. (1991), Sporadic breakdowns of stability in the PBL over simple and complex terrain, Bound.-Layer Meteor. 54, 1–2, 69–87, DOI: 10.1007/BF00119413.CrossRefGoogle Scholar
  37. Nappo, C.J. (2002), An Introduction to Atmospheric Gravity Waves, Academic Press, 276 pp.Google Scholar
  38. Nappo, C.J., and G. Chimonas (1992), Wave exchange between the ground surface and a boundary-layer critical level, J. Atmos. Sci. 49, 13, 1075–1091, DOI: 10.1175/1520-0469(1992)049<1075:WEBTGS>2.0.CO;2.CrossRefGoogle Scholar
  39. Nappo, C.J., and G. Svensson (2008), A parameterization with wave saturation adjustment of subgrid-scale average wave stress over three-dimensional topography. In: Proc. 18th Symposium on Boundary Layer and Turbulence, 9–13 June 2008, Stockholm, paper 6A.2.Google Scholar
  40. Poulos, G.S., W. Blumen, D.C. Fritts, J.K. Lundquist, J. Sun, S.P. Burns, C. Nappo, R. Banta, R. Newsom, J. Cuxart, E. Terradellas, B. Balsley, and M. Jensen (2002), Cases-99: A comprehensive investigation of the stable nocturnal boundary layer, Bull. Am. Meteor. Soc. 83, 4, 555–581, DOI: 10.1175/1520-0477(2002)083<0555:Caciot>2.3.Co;2.CrossRefGoogle Scholar
  41. Salmond, J.A., and I.G. McKendry (2005), A review of turbulence in the very stable nocturnal boundary layer and its implications for air quality, Prog. Phys. Geog. 29, 2, 171–188, DOI: 10.1191/0309133305pp442ra.CrossRefGoogle Scholar
  42. Shutts, G. (1995), Gravity-wave drag parametrization over complex terrain: The effect of critical-level absorption in directional wind-shear, Quart. J. Roy. Met. Soc. 121, 525, 1005–1021, DOI: 10.1002/qj.49712152504.CrossRefGoogle Scholar
  43. Steeneveld, G.J., and A.A.M. Holtslag (2009), Meteorological aspects of air quality. In: G.C. Romano and A.G. Conti (eds.), Air Quality in the 21st Century (in press).Google Scholar
  44. Steeneveld, G.J., B.J.H. van de Wiel, and A.A.M. Holtslag (2006), Modeling the evolution of the atmospheric boundary layer coupled to the land surface for three contrasting nights in CASES-99, J. Atmos. Sci. 63, 3, 920–935, DOI: 10.1175/JAS3654.1.CrossRefGoogle Scholar
  45. Steeneveld, G.J., A.A.M. Holtslag, C.J. Nappo, B.J.H. van de Wiel, and L. Mahrt (2008a), Exploring the possible role of small-scale terrain drag on stable boundary layers over land, J. Appl. Meteorol. Clim. 47, 10, 2518–2530, DOI: 10.1175/2008JAMC1816.1.CrossRefGoogle Scholar
  46. Steeneveld, G.J., T. Mauritsen, E.I.F. de Bruijn, J. Vilá-Guerau de Arellano, G. Svensson, and A.A.M. Holtslag (2008b), Evaluation of limited-area models for the representation of the diurnal cycle and contrasting nights in CASES-99, J. Appl. Meteor. Clim. 47, 3, 869–887, DOI: 10.1175/2007JAMC1702.1.CrossRefGoogle Scholar
  47. Steeneveld, G.J., C.D. Groot Zwaaftink, M.J.J. Wokke, S. Pijlman, B.G. Heusinkveld, A.F.G. Jacobs, and A.A.M. Holtslag (2008c), Long term observations of long wave radiative flux divergence in the stable boundary layer over land. In: Proc. 18th Symposium on Boundary Layer and Turbulence, 9–13 June 2008, Stockholm, paper 17.B6.Google Scholar
  48. Storm, B., J. Dudhia, S. Basu, A. Swift, and I. Giammanco (2009), Evaluation of the weather research and forecasting model on forecasting low-level jets: Implications for wind energy, Wind Energy 12, 1, 81–90, DOI: 10.1002/we.288.CrossRefGoogle Scholar
  49. Stull, R.B. (1988), An Introduction to Boundary-Layer Meteorology, Kluwer Academic Publishers, Dordrecht.Google Scholar
  50. Sun, J., D.H. Lenschow, S.P. Burns, R.M. Banta, R.K. Newsom, R. Coulter, S. Frasier, T. Ince, C.J. Nappo, B.B. Balsey, M. Jensen, L. Mahrt, D. Miller, and B. Skelly (2004), Atmospheric disturbances that generate intermittent turbulence in nocturnal boundary layers, Bound.-Layer Meteor. 110, 2, 255–279, DOI: 10.1023/A:1026097926169.CrossRefGoogle Scholar
  51. Tjernström, M., B.B. Balsley, G. Svensson, and C.J. Nappo (2009), The effects of critical layers on residual layer turbulence, J. Atmos. Sci. 66, 2, 468–480, DOI: 10.1175/2008JAS2729.1.CrossRefGoogle Scholar
  52. Van de Wiel, B.J.H (2002), Intermittent turbulence and oscillations in the stable boundary layer over land, PhD Thesis, Wageningen University, Wageningen, 129 pp.Google Scholar
  53. Van Dijk, A., A.F. Moene, and H.A.R. de Bruin (2004), The Principles of Surface Flux Physics: Theory, Practice and Description of the ECPACK Library, Wageningen University Int. Report 2004/1, Wageningen, 99 pp.Google Scholar
  54. Van Ulden, A.P., and A.A.M. Holtslag (1985), Estimation of atmospheric boundary layer parameters for diffusion applications, J. Appl. Meteorol. 24, 11, 1196–1207, DOI: 10.1175/1520-0450(1985)024<1196:EOABLP>2.0.CO;2.CrossRefGoogle Scholar
  55. Van Ulden, A.P., and J. Wieringa (1996), Atmospheric boundary layer research at Cabauw, Bound.-Layer Meteor. 78, 1–2, 39–69, DOI: 10.1007/BF00122486.CrossRefGoogle Scholar
  56. Viterbo, P., and A.C.M. Beljaars (1995), An improved land surface parameterization scheme in the ECMWF model and its validation, J. Climate 8, 11, 2716–2748, DOI: 10.1175/1520-0442(1995)008<2716:AILSPS>2.0.CO;2.CrossRefGoogle Scholar
  57. Vogelezang, D.H.P., and A.A.M. Holtslag (1996), Evaluation and model impacts of alternative boundary-layer height formulations, Bound.-Layer Meteor. 81, 3–4, 245–269, DOI: 10.1007/BF02430331.CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Gert-Jan Steeneveld
    • 1
  • Carmen J. Nappo
    • 2
  • Albert A.M. Holtslag
    • 1
  1. 1.Department of Meteorology and Air QualityWageningen UniversityWageningenThe Netherlands
  2. 2.CJN Research MeteorologyKnoxvilleUSA

Personalised recommendations