Acta Geophysica

, Volume 57, Issue 4, pp 981–1010 | Cite as

Structure of numerically simulated katabatic and anabatic flows along steep slopes

Article

Abstract

Direct numerical simulation (DNS) is applied to investigate properties of katabatic and anabatic flows along thermally perturbed (in terms of surface buoyancy flux) sloping surfaces in the absence of rotation. Numerical experiments are conducted for homogeneous surface forcings over infinite planar slopes. The simulated flows are the turbulent analogs of the Prandtl (1942) one-dimensional laminar slope flow. The simulated flows achieve quasi-steady periodic regimes at large times, with turbulent fluctuations being modified by persistent low-frequency oscillatory motions with frequency equal to the product of the ambient buoyancy frequency and the sine of the slope angle. These oscillatory wave-type motions result from interactions between turbulence and ambient stable stratification despite the temporal constancy of the surface buoyant forcing. The structure of the mean-flow fields and turbulence statistics in simulated slope flows is analyzed. An integral dynamic similarity constraint for steady slope/wall flows forced by surface buoyancy flux is derived and quantitatively verified against the DNS data.

Key words

katabatic flow anabatic flow numerical simulation boundary layer turbulence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson, B.W. (1981), Meso-Scale Atmospheric Circulations, Academic Press, London, 495 pp.Google Scholar
  2. Ball, F.K. (1956), The theory of strong katabatic winds, Aust. J. Phys. 9, 373–386.Google Scholar
  3. Batchelor, G.K. (1967), An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, 615 pp.Google Scholar
  4. Brazel, A.J., H.J.S. Fernando, J.C.R. Hunt, N. Selover, B.C. Hedquist, and E. Pardyjak (2005), Evening transition observations in Phoenix, Arizona, J. Appl. Meteorol. 44, 99–112, DOI: 10.1175/JAM-2180.1CrossRefGoogle Scholar
  5. Bromwich, D.H., J.J. Cassano, T. Klein, G. Heinemann, K.M. Hines, K. Steffen, and J.E. Box (2001), Mesoscale modeling of katabatic winds over Greenland with the Polar MM5, Monthly Weath. Rev. 129, 2290–2309, DOI: 10.1175/1520-0493(2001)129<2290:MMOKWO>2.0.CO;2.CrossRefGoogle Scholar
  6. Defant, F. (1949), Zur Theorie der Hangwinde, nebst Bemerkungen zur Theorie der Berg- und Talwinde, Arch. Met. Geophys. Bioklim. A 1, 421–450 (in German).CrossRefGoogle Scholar
  7. Ekman, V.W. (1905), On the influence of the earth's rotation on ocean currents, Ark. Mat. Astron. Fysik 2, 1–53.Google Scholar
  8. Elder, J.W. (1965), Laminar free convection in a vertical slot, J. Fluid Mech. 23, 77–98, DOI: 10.1017/S0022112065001246.CrossRefGoogle Scholar
  9. Fedorovich, E., and A. Shapiro (2009), Turbulent natural convection along a vertical plate immersed in a stably stratified fluid, J. Fluid Mech. (in press).Google Scholar
  10. Fernando, H.J.S., S.M. Lee, J. Anderson, M. Princevac, E. Pardyjak, and S. Grossman-Clarke (2001), Urban fluid mechanics: air circulation and contaminant dispersion in cities, Environ. Fluid Mech. 1, 107–164, DOI: 10.1023/A:1011504001479.CrossRefGoogle Scholar
  11. Gallée, H., and G. Schayes (1994), Development of a 3-dimensional meso-? primitive equation model: Katabatic winds simulation in the area of Terra Nova Bay, Antarctica, Monthly Weath. Rev. 122, 671–685, DOI: 10.1175/1520-0493(1994)122<0671:DOATDM>2.0.CO;2.CrossRefGoogle Scholar
  12. Gill, A.E. (1966), The boundary-layer regime for convection in a rectangular cavity, J. Fluid Mech. 26, 515–536, DOI: 10.1017/S0022112066001368.CrossRefGoogle Scholar
  13. Heinemann, G., and T. Klein (2002), Modelling and observations of the katabatic flow dynamics over Greenland, Tellus A 54, 542–554, DOI: 10.1034/j.1600-0870.2002.201401.x.CrossRefGoogle Scholar
  14. Hunt, J.C.R., H.J.S. Fernando, and M. Princevac (2003), Unsteady thermally driven flows on gentle slopes, J. Atmos. Sci. 60, 2169–2182, DOI: 10.1175/1520-0469(2003)060<2169:UTDFOG>2.0.CO;2.CrossRefGoogle Scholar
  15. Klein, T., G. Heinemann, D.H. Bromwich, J.J. Cassano, and K.M. Hines (2001), Mesoscale modeling of katabatic winds over Greenland and comparisons with AWS and aircraft data, Meteor. Atmos. Phys. 78, 115–132, DOI:10.1007/s007030170010.CrossRefGoogle Scholar
  16. Langhaar, H.L. (1951), Dimensional Analysis and Theory of Models, Robert E. Krieger Publishing Company, Malabar, FL, 166 pp.Google Scholar
  17. Lee, S.M., H.J.S. Fernando, M. Princevac, D. Zajic, M. Sinesi, J.L. McCulley, and J. Anderson (2003), Transport and diffusion of ozone in the nocturnal and morning planetary boundary layer of the Phoenix valley, Environ. Fluid Mech. 3, 331–362, DOI: 10.1023/A:1023680216173.CrossRefGoogle Scholar
  18. Lu, R., and R.P. Turco (1994), Air pollutant transport in a coastal environment. Part I: Two-dimensional simulations of sea-breeze and mountain effects, J. Atmos. Sci. 51, 2285–2308, DOI: 10.1175/1520-0469(1994)051<2285:APTIAC>2.0.CO;2.CrossRefGoogle Scholar
  19. Monti, P., H.J.S. Fernando, M. Princevac, W.C. Chan, T.A. Kowalewski, and E.R. Pardyjak (2002), Observations of flow and turbulence in the nocturnal boundary layer over a slope, J. Atmos. Sci. 59, 2513–2534, DOI: 10.1175/1520-0469(2002)059<2513:OOFATI>2.0.CO;2.CrossRefGoogle Scholar
  20. Nappo, C.J., and K.S. Rao (1987), A model study of pure katabatic flows, Tellus A 39, 61–71.CrossRefGoogle Scholar
  21. Oerlemans, J. (1998), The atmospheric boundary layer over melting glaciers. In: A.A.M. Holtslag and P.G. Duynkerke (eds.), Clear and Cloudy Boundary Layers, Royal Netherlands Academy of Arts and Sciences, Amsterdam, 129–153.Google Scholar
  22. Papadopoulos, K.H., C.G. Helmis, A.T. Soilemes, J. Kalogiros, P.G. Papageorgas, and D.N. Asimakopoulos (1997), The structure of katabatic flows down a simple slope, Quart. J. Roy. Met. Soc. 123, 1581–1601, DOI: 10.1002/qj.49712354207.CrossRefGoogle Scholar
  23. Parish, T.R. (1984), A numerical study of strong katabatic winds over Antarctica, Monthly Weath. Rev. 112, 545–554, DOI: 10.1175/1520-0493(1984)112<0545:ANSOSK>2.0.CO;2.CrossRefGoogle Scholar
  24. Parish, T.R., and K.T. Waight (1987), The forcing of antarctic katabatic winds, Monthly Weath. Rev. 115, 2214–2226, 10.1175/1520-0493(1987)115<2214:TFOAKW>2.0.CO;2CrossRefGoogle Scholar
  25. Peacock, T., R. Stocker, and M. Aristoff (2004), An experimental investigation of the angular dependence of diffusion-driven flow, Phys. Fluids 16, 3503–3505, DOI: 10.1063/1.1763091.CrossRefGoogle Scholar
  26. Phillips, O.M. (1970), On flows induced by diffusion in a stably stratified fluid, Deep-Sea Res., 17, 435–443.Google Scholar
  27. Pope, S.B. (2000), Turbulent Flows, Cambridge University Press, Cambridge, 771 pp.Google Scholar
  28. Prandtl, L. (1942), Führer durch die Strömungslehre, Vieweg und Sohn, Braunschweig, 382 pp. (in German).Google Scholar
  29. Rampanelli, G., D. Zardi, and R. Rotunno (2004), Mechanisms of up-valley winds, J. Atmos. Sci. 61, 3097–3111, DOI: 10.1175/JAS-3354.1.CrossRefGoogle Scholar
  30. Princevac, M., J.C.R. Hunt, and H.J.S. Fernando (2008), Quasi-steady katabatic winds on slopes in wide valleys: Hydraulic theory and observations, J. Atmos. Sci. 65, 627–643, DOI: 10.1175/2007JAS2110.1.CrossRefGoogle Scholar
  31. Renfrew, I.A. (2004), The dynamics of idealized katabatic flow over a moderate slope and ice shelf, Quart. J. Roy. Met. Soc. 130, 1023–1045, DOI: 10.1256/qj.03.24.CrossRefGoogle Scholar
  32. Schumann, U. (1990), Large-eddy simulation of the up-slope boundary layer, Quart. J. Roy. Met. Soc. 116, 637–670, DOI: 10.1256/smsqj.49306.CrossRefGoogle Scholar
  33. Shapiro, A., and E. Fedorovich (2004a), Unsteady convectively driven flow along a vertical plate immersed in a stably stratified fluid, J. Fluid Mech. 498, 333–352, DOI: 10.1017/S0022112003006803.CrossRefGoogle Scholar
  34. Shapiro, A., and E. Fedorovich (2004b), Prandtl-number dependence of unsteady natural convection along a vertical plate in a stably stratified fluid, Int. J. Heat Mass Transfer 47, 4911–4927, DOI: 10.1016/j.ijheatmasstransfer. 2004.04.035.CrossRefGoogle Scholar
  35. Shapiro, A., and E. Fedorovich (2005), Analytical and numerical study of natural convection in a stably stratified fluid along vertical plates and cylinders with temporally-periodic surface temperature variations. In: R. Bennacer, A.A. Mohamad, M. El Ganaoui, and J. Sicard (eds.), Progress in Computational Heat and Mass Transfers, vol. 1, Lavoisier, Paris, 77–82.Google Scholar
  36. Shapiro, A., and E. Fedorovich (2006), Natural convection in a stably stratified fluid along vertical plates and cylinders with temporally-periodic surface temperature variations, J. Fluid Mech. 546, 295–311, DOI: 10.1017/S0022112005007159.CrossRefGoogle Scholar
  37. Shapiro, A., and E. Fedorovich (2007), Katabatic flow along a differentially cooled sloping surface, J. Fluid Mech. 571, 149–175, DOI: 10.1017/S0022112006003302.CrossRefGoogle Scholar
  38. Shapiro, A., and E. Fedorovich (2008), Coriolis effects in homogeneous and inhomogeneous katabatic flows, Quart. J. Roy. Met. Soc. 134, 353–370, DOI:10.1002/qj.217.CrossRefGoogle Scholar
  39. Shchepetkin, A.F., and J.C. McWilliams (1998), Quasi-monotone advection schemes based on explicit locally adaptive dissipation, Monthly Weath. Rev. 126, 1541–1580, DOI: 10.1175/1520-0493(1998)126<1541:QMASBO>2.0.CO;2.CrossRefGoogle Scholar
  40. Skyllingstad, E.D. (2003), Large-eddy simulation of katabatic flows, Bound.-Layer Meteor. 106, 217–243, DOI: 10.1023/A:1021142828676.CrossRefGoogle Scholar
  41. Tennekes, H., and J.L. Lumley (1972), A First Course in Turbulence, The MIT Press, Cambridge, MA, 300 pp.Google Scholar
  42. Tyson, P.D. (1968), Velocity fluctuations in the mountain wind, J. Atmos. Sci. 25, 381–384, DOI: 10.1175/1520-0469(1968)025<0381:VFITMW>2.0.CO;2.CrossRefGoogle Scholar
  43. Veronis, G. (1970), The analogy between rotating and stratified fluids, Ann. Rev. Fluid Mech. 2, 37–66, DOI: 10.1146/annurev.fl.02.010170.000345.CrossRefGoogle Scholar
  44. Wunsch, C. (1970), On oceanic boundary mixing, Deep-Sea Res. 17, 293–301.Google Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.School of MeteorologyUniversity of OklahomaNormanUSA

Personalised recommendations