Skip to main content

Advertisement

Log in

Measurement of aerosol optical thickness over the Atlantic Ocean and in West Antarctica, 2006–2007

  • Research Article
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

In this paper, optical measurements of aerosol properties made during a ship cruise from Poland to Antarctic Station in September and October 2006, and during the cruise back to Gdynia in April and May 2007 are described. A large gradient of pollution between the clear South Atlantic and the dusty North Atlantic was observed. The maximum of aerosol optical thickness at a wavelength of 500 nm reached 0.4 at 20°N in September 2006 and 0.3 at 40°N in May 2007, respectively. Strong Saharan dust transport is suggested as an explanation for the small values of Ångström exponent observed (values of 0.2 and 0.4 on these respective dates). On the Southern Hemisphere the aerosol optical thickness at 500 nm ranged from 0.05 to 0.2. Significant increases of the aerosol optical thickness were associated with strong wind and sea salt production. Good agreement was found when the in situ measurements of aerosol optical thickness were compared to satellite retrievals and modelling results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andronache, C., L.J. Donner, C.J. Seman, and R.S. Hemler (2002), A study of the impact of the Intertropical Convergence Zone on aerosols during INDOEX, J. Geophys. Res. 107, D19, 8027, DOI: 10.1029/2001JD900248.

    Article  Google Scholar 

  • Christensen, J.H. (1997), The Danish Eulerian hemispheric model - a three-dimensional air pollution model used for the arctic, Atmos. Environ. 31, 24, 4169–4191, DOI: 10.1016/S1352-2310(97)00264-1.

    Article  Google Scholar 

  • Draxler, R.R., and G.D. Hess (1997), Description of the HYSPLIT_4 modelling system, NOAA Tech. Memo. ERL ARL-224, 24 pp., Environmental Research Laboratory, Boulder, CO.

    Google Scholar 

  • Deschamps, P.Y., M. Herman, and D. Tanre (1983), Modeling of the atmospheric effects and its application to the remote sensing of ocean color, Appl. Optics 22, 3751–3758.

    Article  Google Scholar 

  • Ichoku, C., Y.J. Kaufman, L.A. Remer, and R. Levy (2004), Global aerosol remote sensing from MODIS, Adv. Space Res. 34, 4, 820–827. DOI: 10.1016/j.asr.2003.07.071.

    Article  Google Scholar 

  • IPCC (2007), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller (eds.), Cambridge University Press, Cambridge, United Kingdom and New York, NY, 996 pp.

    Google Scholar 

  • Kalnay, E., M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, A. Leetmaa, R. Reynolds, M. Chelliah, W. Ebisuzaki, W. Higgins, J. Janowiak, K.C. Mo, C. Ropelewski, J. Wang, R. Jenne, and D. Joseph (1996), The NCEP/NCAR 40-year reanalysis project, Bull. Am. Meteor. Soc. 77, 3, 437–471, DOI: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    Article  Google Scholar 

  • Kejna, M. (2008), Topoclimatic conditions in the vicinity of the Arctowski Station (King George Island, Antarctica) during the summer season of 2006/2007, Pol. Polar Res. 29, 2, 95–116.

    Google Scholar 

  • Liljequist, G.H. (1957), Energy Exchange of an Antarctic Snow Field, Norwegian-British-Swedish Antarctic Expedition 1949-1952. Scientific Results, Vol. II, Part 1A, Norwegian Polar Institute, Oslo, 109 pp.

    Google Scholar 

  • Morys, M., F.M. Mims III, S. Hagerup, S.E. Anderson, A. Baker, J. Kia, and T. Walkup (2001), Design, calibration, and performance of MICROTOPS II handheld ozone monitor and Sun photometer, J. Geophys. Res. 106, D13, 14573–14582, DOI: 10.1029/2001JD900103.

    Article  Google Scholar 

  • Porter, J.N., M. Miller, Ch. Pietras, and C. Motell (2001), Ship-based sun photometer measurements using Microtops sun photometers, J. Atmos. Ocean Techn. 18, 5, 765–774, DOI: 10.1175/1520-0426(2001)018<0765:SBSPMU>2.0.CO;2.

    Article  Google Scholar 

  • Solar Light Company Inc. (2003), MICROTOPS II Ozone Monitor & Sunphotometer Version 5.5.

  • Tomasi, C., V. Vitale, A. Lupi, C. Di Carmine, M. Campanelli, A. Herber, R. Treffeisen, R.S. Stone, E. Andrews, S. Sharma, V. Radionov, W. von Hoyningen-Huene, K. Stebel, G.H. Hansen, C.L. Myhre, C. Wehrli, V. Aaltonen, H. Lihavainen, A. Virkkula, R. Hillamo, J. Strom, C. Toledano, V.E. Cachorro, P. Ortiz, A.M. de Frutos, S. Blindheim, M. Frioud, M. Gausa, T. Zielinski, T. Petelski, and T. Yamanouchi (2007), Aerosols in polar regions: A historical overview based on optical depth and in situ observations, J. Geophys. Res. 112, D16205, DOI: 10.1029/2007JD008432.

    Article  Google Scholar 

  • Witek, M.L., P.J. Flatau, P.K. Quinn, and D.L. Westphal (2007), Global sea-salt modeling: Results and validation against multicampaign shipboard measurements, J. Geophys. Res. 112, D08215, DOI: 10.1029/2006JD007779.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Posyniak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Posyniak, M., Markowicz, K. Measurement of aerosol optical thickness over the Atlantic Ocean and in West Antarctica, 2006–2007. Acta Geophys. 57, 494–508 (2009). https://doi.org/10.2478/s11600-009-0002-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-009-0002-0

Key words

Navigation