Acta Geophysica

, Volume 57, Issue 1, pp 220–235 | Cite as

The Planeterrella, a pedagogic experiment in planetology and plasma physics

  • Jean Lilensten
  • Mathieu Barthélemy
  • Cyril Simon
  • Philippe Jeanjacquot
  • Guillaume Gronoff
Article

Abstract

We present here a plasma physics experiment which makes it possible to simulate, in a naive yet useful way, the formation of polar lights. It involves shooting electrons at a magnetized sphere placed in a vacuum chamber. This experiment, inspired by K. Birkeland’s Terrella, built at the turn of 19th century, allows the visualization of very many geophysical and astrophysical situations. Although delicate, it is feasible at undergraduate level.

Key words

Aurora planetary ionospheres plasma the Planeterrella experiment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balescu, R. (1988), Transport Processes in Plasmas. Vol. 1, North-Holland, Amsterdam.Google Scholar
  2. Bertaux, J.-L., F. Leblanc, O. Witasse, E. Quemerais, J. Lilensten, S.A. Stern, B. Sandel, and O. Korablev (2005), Discovery of an aurora on Mars, Nature 435, 790–794, DOI: 10.1038/nature03603.CrossRefGoogle Scholar
  3. Chen, F.F. (1984), Introduction to Plasma Physics and Controlled Fusion, 2nd ed., Plenum Press, New York - London.Google Scholar
  4. Dendy, R.O. (1995), Plasma Physics. An Introductory Course, Cambridge University Press, Cambridge.Google Scholar
  5. Dortous de Mairan, J.J. (1733), Trait’e Physique et Historique de l’Aurore Bor’eale, De l’Imprimerie Royale, Paris, 281 pp.Google Scholar
  6. Egeland, A., and W.J. Burke (2005), Kristian Birkeland, the First Space Scientist, Springer, New York, DOI: 10.1007/1-4020-3294-3.Google Scholar
  7. Kivelson, M.G., and C.T. Russell (eds.), (1995), Introduction to Space Physics, Cambridge University Press, New York, 568 pp.Google Scholar
  8. Kivelson, M.G., K.K. Khurana, C.T. Russell, R.J. Walker, J. Warnecke, F.V. Coroniti, C. Polanskey, D.J. Southwood, and G. Schubert (1996), Discovery of Ganymede’s magnetic field by the Galileo spacecraft, Nature 384, 6609, 537–541, DOI: 10.1038/384537a0.CrossRefGoogle Scholar
  9. Lilensten, J., and J. Bornarel (2006), Space Weather, Environment and Societies, Springer, Dordrecht, 242 pp, DOI: 10.1007/1-4020-4332-5.Google Scholar
  10. Lummerzheim, D., and J. Lilensten (1994), Electron transport and energy degradation in the ionosphere: evaluation of the numerical solution, comparison with laboratory experiments and auroral observations, Ann. Geophys. 12, 1039–1051, DOI: 10.1007/s00585-994-1039-7.Google Scholar
  11. Rees, M.H. (1989), Physics and Chemistry of the Upper Atmosphere, Cambridge University Press, Cambridge - New York.Google Scholar
  12. Shu, F.H. (1992), The Physics of Astrophysics. Vol. 2: Gas Dynamics, University Science Books, Sausalito, CA, 476 pp.Google Scholar
  13. Stern, D.P. (1996), A brief history of magnetospheric physics during the space age, Rev. Geophys. 34, 1, 1–32, DOI: 10.1029/95RG03508.CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jean Lilensten
    • 1
  • Mathieu Barthélemy
    • 1
  • Cyril Simon
    • 2
  • Philippe Jeanjacquot
    • 3
  • Guillaume Gronoff
    • 1
  1. 1.Laboratoire de Planétologie de Grenoble, OSUG-CNRS-UJFGrenobleFrance
  2. 2.Belgian Institute for Space Aeronomy and B.USOCBrusselsBelgium
  3. 3.Lycée Charlie ChaplinDécinesFrance

Personalised recommendations