Skip to main content
Log in

A review of progress in modelling of induced geoelectric and geomagnetic fields with special regard to induced currents

  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

The Earth’s lithosphere and mantle respond to Space Weather through time-varying, depth-dependent induced magnetic and electric fields. Understanding the properties of these electromagnetic fields is a key consideration in modelling the hazard to technological systems from Space Weather. In this paper we review current understanding of these fields, in terms of regional and global-scale geology and geophysics. We highlight progress towards integrated European-scale models of geomagnetic and geoelectric fields, specifically for the purposes of modelling geomagnetically induced currents in power grids and pipelines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amm, O. (1997), Ionospheric elementary current systems in spherical coordinates and their application, J. Geomagn. Geoelectr. 49, 7, 947–955.

    Google Scholar 

  • Avdeev, D.B., A.V. Kuvshinov, O.V. Pankratov, and O. Newman (2002), Three dimensional induction logging problems. Part 1: An integral equation solution and model comparisons, Geophysics 67, 2, 413–426, DOI: 10.1190/1.1468601.

    Article  Google Scholar 

  • Beamish, D., T.D.G. Clark, E. Clarke, and A.W.P. Thomson (2002), Geomagnetically induced currents in the UK: geomagnetic variations and surface electric fields, J. Atmos. Sol.-Terr. Phys. 64, 1779–1792, DOI: 10.1016/S1364-6826(02)00127-X.

    Article  Google Scholar 

  • Boteler, D.H. (2001), Assessment of geomagnetic hazard to power systems in Canada, Nat. Hazards 23, 2/3, 101–120, DOI: 10.1023/A:1011194414259.

    Article  Google Scholar 

  • Boteler, D., and R.J. Pirjola (1998), The complex-image method for calculating the magnetic and electric fields produced at the surface of the Earth by the auroral electrojet, Geophys. J. Int. 132, 31–40, DOI: 10.1046/j.1365-246x.1998.00388.x.

    Article  Google Scholar 

  • Engels, M., T. Korja, and the BEAR Working Group (2002), Multisheet modelling of the electrical conductivity structure in the Fennoscandian Shield, Earth Planets Space 54, 559–573.

    Google Scholar 

  • Everett, M.E., S. Constable, and C.G. Constable (2003), Effects of near-surface conductance on global satellite induction responses, Geophys. J. Int. 153, 1, 277–286, DOI: 10.1046/j.1365-246X.2003.01906.x.

    Article  Google Scholar 

  • Ferguson, I.J., J.A. Craven, R.D. Kurtz, D.C. Boerner, R.C. Bailey, X. Wu, M.R. Orellana, J. Spratt, G. Wennberg, and A. Norton (2005), Geoelectric response of Archean lithosphere in the western Superior Province, central Canada, Phys. Earth Planet. Int. 150, 123–143, DOI: 10.1016/j.pepi.2004.08.025.

    Article  Google Scholar 

  • Fernberg, P.A., C. Samson, D.H. Boteler, L. Trichtchenko, and P. Larocca (2007), Earth conductivity structures and their effects on geomagnetic induction in pipelines, Ann. Geophys. 25, 207–218.

    Google Scholar 

  • Gleisner, H., and H. Lundstedt (2001a), A neural network-based local model for prediction of geomagnetic disturbances, J. Geophys. Res. 106, 8425–8434, DOI: 10.1029/2000JA900142.

    Article  Google Scholar 

  • Gleisner, H., and H. Lundstedt (2001b), Auroral electrojet predictions with dynamic neural networks, J. Geophys. Res. 106, 24541–24550, DOI: 10.1029/2001JA900046.

    Article  Google Scholar 

  • Haak, V. (1985), Anomalies of the electrical conductivity in the Earth’s crust and upper Mantle. In: K. Fuchs and H. Soffel (eds.), Geophysics of the Solid Earth, the Moon and the Planets, Landolt-Börnstein, Group V: Geophysics, vol. 2b, 397–436, Springer-Verlag, Berlin, DOI: 10.1007/b20011.

    Google Scholar 

  • Hjelt, S.E. (1988), Regional EM studies in the 80’s, Surv. Geophys. 9, 349–387.

    Article  Google Scholar 

  • Korja, T. (2007), How is the European lithosphere imaged by magnetotellurics? Surv. Geophys. 28, 2–3, 239–272, DOI: 10.1007/s10712-007-9024-9.

    Article  Google Scholar 

  • Korja, T., M. Engels, A.A. Zhamaletdinov, A.A. Kovtun, N.A. Palshin, M.Y. Smirnov, A.D. Tokarev, V.E. Asming, L.L. Vanyan, I.L. Vardaniants, and the BEAR Working Group (2002), Crustal conductivity in Fennoscandia — a compilation of a databse on crustal conductance in the Fennoscandian Shield, Earth Planets Space 54, 535–558.

    Google Scholar 

  • Kuvshinov, A. (2007), Global 3-D EM induction in the solid Earth and the oceans. In: V. Spichak (ed.), Electromagnetic Sounding of the Earth’s Interior, 4–24, Elsevier, Amsterdam.

    Google Scholar 

  • Kuvshinov, A., and N. Olsen (2006), A global model of mantle conductivity derived from 5 years of CHAMP, Ørsted and SAC-C magnetic data, Geophys. Res. Lett. 33, L18301, DOI: 10.1029/2006GL027083.

    Article  Google Scholar 

  • Kuvshinov, A., T. Sabaka, and N. Olsen (2006), 3-D electromagnetic induction studies using the Swarm constellation: Mapping conductivity anoamlies in the Earth’s mantle, Earth Planets Space 58, 417–427.

    Google Scholar 

  • Laske, G., and G. Masters (1997), A global digital map of sediment thickness, EOS Trans. AGU, Fall Meeting Suppl. 78, F483.

    Google Scholar 

  • Lehtinen, M., and R. Pirjola (1985), Currents produced in earthed conductor networks by geomagnetically induced currents, Ann. Geophys. 3, 4, 479–484.

    Google Scholar 

  • McKay, A.J., and K.A. Whaler (2006), The electric field in northern England and southern Scotland: implications for geomagnetically induced currents, Geophys. J. Int. 167, 2, 613–625, DOI: 10.1111/j.1365-246X.2006.03128.x.

    Article  Google Scholar 

  • Olsen, N., and A. Kuvshinov (2004), Modelling the ocean effect of geomagnetic storms, Earth Planets Space 56, 525–530.

    Google Scholar 

  • Pulkkinen, A., and M. Engels (2005), The role of 3D geomagnetic induction in the determination of the ionospheric currents from ground-based data, Ann. Geophys. 23, 909–917.

    Google Scholar 

  • Pulkkinen, A., and A. Viljanen (2007), The complex spatiotemporal dynamics of ionospheric currents. In: J. Lilensten (ed.), Space Weather: Research Towards Application in Europe, Series: Astrophysics and Space Science Library, vol. 344, 332 pp.

  • Pulkkinen, A., R. Pirjola, D. Boteler, A. Viljanen, and I. Yegorov (2001), Modelling of space weather effects on pipelines, J. Appl. Geophys. 48, 4, 233–256, DOI: 10.1016/S0926-9851(01)00109-4.

    Article  Google Scholar 

  • Pulkkinen, A., O. Amm, A. Viljanen, and the BEAR Working Group (2003a), Ionospheric equivalent current distributions determined with the method of spherical elementary current systems, J. Geophys. Res. 108, A2, 1053, DOI: 10.1029/2001JA005085.

    Article  Google Scholar 

  • Pulkkinen, A., O. Amm, A. Viljanen, and the BEAR Working Group (2003b), Separation of the geomagnetic variation field into parts of external and internal parts using the spherical elecmenatry currents system method, Earth Planets Space 55, 117–129.

    Google Scholar 

  • Pulkkinen, A., S. Lindahl, A. Viljanen, and P. Pirjola (2005), Geomagnetic storm of 29–31 October 2003: Geomagnetically induced currents and their relation to problems in the Swedish high-voltage power transmission system, Space Weather 3, 8, S08C03, DOI: 10.1029/2004SW000123.

    Article  Google Scholar 

  • Pulkkinen, A., A. Viljanen, and P. Pirjola (2007), Determination of ground conductivity and system parameters for optimal modeling of geomagnetically induced current flow in technological systems, Earth Planets Space 99, 999–1006.

    Google Scholar 

  • Purucker, M.E. (2007), Magnetic anomaly map of the world, EOS Trans. AGU 88, 25, 263, DOI: 10.1029/2007EO250003.

    Article  Google Scholar 

  • Schwarz, G. (1990), Electrical conductivity of the Earth’s crust and upper mantle, Surv. Geophys. 11, 2–3, 133–161, DOI: 10.1007/BF01901658.

    Article  Google Scholar 

  • Semenov, V.Yu., and W. Jóźwiak (1999), Model of the geoelectrical structure of the mid- and lower mantle in the Europe-Asia region, Geophys. J. Int. 138, 2, 549–552, DOI: 10.1046/j.1365-246X.1999.00888.x.

    Article  Google Scholar 

  • Thomson, A.W.P., A.J. McKay, E. Clarke, and S.J. Reay (2005), Surface electric fields and geomagnetically induced currents in the Scottish Power grid during the 30 October 2003 geomagnetic storm, Space Weather 3, 11, S11002, DOI: 10.1029/2005SW000156.

    Article  Google Scholar 

  • Vanhamaki, H., O. Amm, and A. Viljanen (2003), One-dimensional upward continuation of the ground magnetic field disturbance using spherical elementary current systems, Earth Planets Space 55, 613–625.

    Google Scholar 

  • Viljanen, A., O. Amm, and R. Pirjola (1999), Modelling geomagnetically induced currents during different ionospheric situations, J. Geophys. Res. 104, 28,059–28,071, DOI: 10.1029/1999JA900337.

    Article  Google Scholar 

  • Viljanen, A., A. Pulkkinen, O. Amm, R. Pirjola, T. Korja and BEAR Working Group (2004), Fast computation of the geoelectric field using the method of elementary current systems and planar Earth models, Ann. Geophys. 22, 101–113.

    Article  Google Scholar 

  • Vozár, J., V.Y. Semenov, A.V. Kuvshinov, and C. Manoj (2006), Updating the map of Earth’s surface conductance, EOS Trans. AGU 87, 33, DOI: 10.1029/2006EO330004.

    Article  Google Scholar 

  • Weigel, R.S., A.J. Klimas, and D. Vassiliadis (2003), Solar wind coupling to and predictability of ground magnetic fields and their time derivatives, J. Geophys. Res. 108, 1298, DOI: 10.1029/2002JA009627.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan W.P. Thomson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomson, A.W., McKay, A.J. & Viljanen, A. A review of progress in modelling of induced geoelectric and geomagnetic fields with special regard to induced currents. Acta Geophys. 57, 209–219 (2009). https://doi.org/10.2478/s11600-008-0061-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-008-0061-7

Key words

Navigation