Skip to main content
Log in

Investigating dynamic coupling in geospace through the combined use of modeling, simulations and data analysis

  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

Comprehensive understanding of the dynamics of the coupled solar wind-magnetosphere-ionosphere system is of utmost interest, both from the perspective of solar system astrophysics and geophysics research and from the perspective of space applications. The physical processes involved in the dynamical evolution of this complex coupled system are pertinent not only for the Sun-Earth connection, but also for major phenomena in other astrophysical systems. Furthermore, the conditions in geospace collectively termed space weather affect the ever increasing technological assets of mankind in space and therefore need to be understood, quantified and efficiently forecasted. The present collaborative paper communicates recent advances in geospace dynamic coupling research through modeling, simulations and data analysis and discusses future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Araujo-Pradere, E.A., T.J. Fuller-Rowell, and M.V. Codrescu (2002a), STORM: an empirical storm-time ionospheric correction model. 1: Model description, Radio Sci. 37, 5, 1070, DOI: 10.1029/2001RS002467.

    Article  Google Scholar 

  • Araujo-Pradere, E.A., T.J. Fuller-Rowell, and M.V. Codrescu (2002b), STORM: an empirical storm-time ionospheric correction model. 2: Validation, Radio Sci. 37, 5, DOI: 10.1029/2002RS002620.

    Google Scholar 

  • Balasis, G., S. Maus H. Lühr, and M. Rother (2005), Wavelet analysis of CHAMP flux gate magnetometer data. In: C. Reigber, H. Lühr, P. Schwintzer, and J. Wickert (eds.), Earth Observation with CHAMP: Results from Three Years in Orbit, 347–352, Springer, New York, DOI: 10.1007/3-540-26800-6-55.

    Chapter  Google Scholar 

  • Balasis, G., I.A. Daglis, P. Kapiris, M. Mandea, D. Vassiliadis, and K. Eftaxias (2006), From prestorm activity to magnetic storms: a transition described in terms of fractal dynamics, Ann. Geophys. 24, 3557–3567.

    Article  Google Scholar 

  • Belehaki, A., and I. Tsagouri (2002), On the occurrence of storm-induced nighttime ionization enhancements at ionospheric middle latitudes, J. Geophys. Res. 107, A8, 1209, DOI: 10.1029/2001JA005029.

    Article  Google Scholar 

  • Boyle, C.B., P.H. Reiff, and M.R. Hairston (1997), Empirical polar cap potentials, J. Geophys. Res. 102, 111–125, DOI: 10.1029/96JA01742.

    Article  Google Scholar 

  • Consolini, G., and P. De Michelis (2002), Fractal time statistics of AE-index burst waiting times: evidence of metastability, Nonlinear Proc. Geoph. 9, 419–423.

    Google Scholar 

  • Daglis, I.A., and W.I. Axford (1996), Fast ionospheric response to enhanced activity in geospace: Ion feeding of the inner magnetotail, J. Geophys. Res. 101, A3, 5047–5065, DOI: 10.1029/95JA02592.

    Article  Google Scholar 

  • Daglis, I.A., J.U. Kozyra, Y. Kamide, D. Vassiliadis, A.S. Sharma, M.W. Liemohn, W.D. Gonzalez, B.T. Tsurutani, and G. Lu (2003), Intense space storms: Critical issues and open disputes, J. Geophys. Res. 108, A5, 1208, DOI: 10.1029/2002JA009722.

    Article  Google Scholar 

  • Daglis, I.A., D. Delcourt, F.-A. Metallinou, and Y. Kamide (2004), Particle acceleration in the frame of the storm-substorm relation, IEEE Trans. Plasma Science 32, 4, 1449–1454, DOI: 10.1109/TPS.2004.837115.

    Article  Google Scholar 

  • Delcourt, D.C., J.-A. Sauvaud, and A. Pedersen (1990), Dynamics of single-particle orbits during substorm expansion phase, J. Geophys. Res. 95, 20853–20865.

    Article  Google Scholar 

  • Fok, M.-C., T.E. Moore, P.C. Brandt, D.C. Delcourt, S.P. Slinker, and J.A. Fedder (2006), Impulsive enhancements of oxygen ions during substorms, J. Geophys. Res. 111, A10222, DOI: 10.1029/2006JA011839.

    Article  Google Scholar 

  • Ganushkina, N.Y., T.I. Pulkkinen, and T. Fritz (2005), Role of substorm-associated impulsive electric fields in the ring current development during storms, Ann. Geophys. 23, 579–591.

    Google Scholar 

  • Ganushkina, N.Y., T.I. Pulkkinen, A. Milillo, and M. Liemohn (2006), Evolution of the proton ring current energy distribution during 21–25 April 2001 storm, J. Geophys. Res. 111, A11SO8, DOI: 10.1029/2006JA011609.

    Article  Google Scholar 

  • Janhunen, P. (1996), GUMICS-3: a global ionosphere-magnetosphere coupling simulation with high ionospheric resolution, Proceedings of Environmental Modeling for Space-Based Applications, ESA SP-392.

  • Kan, J.R., and L.C. Lee (1979), Energy coupling function and solar wind-magnetosphere dynamo, Geophys. Res. Lett. 6, 7, 577–580, DOI: 10.1029/GL006i007p00577.

    Article  Google Scholar 

  • Korth, A., R.H.W. Friedel, F. Frutos-Alfaro, C.G. Mouikis, and Q. Zong (2002), Ion composition of substorms during storm-time and non-storm-time periods, J. Atmos. Sol.-Terr. Phys. 64, 561–566.

    Article  Google Scholar 

  • Kutiev, I., and P. Muhtarov (2001), Modeling of midlatitude F region response to geomagnetic activity, J. Geophys. Res. 106, A8, 15501–15509, DOI: 10.1029/2001JA900018.

    Article  Google Scholar 

  • Li, X., D.N. Baker, M. Temerin, G.D. Reeves, and R.D. Belian (1998), Simulation of dispersionless injections and drift echoes of energetic electrons associated with substorms, Geophys. Res. Lett. 25, 20, 3763–3766, DOI: 10.1029/1998GL900001.

    Article  Google Scholar 

  • Liemohn, M., and J.U. Kozyra (2003), Lognormal form of the ring-current energy content, J. Atmos. Sol.-Terr. Phys. 65, 871–886.

    Article  Google Scholar 

  • Liemohn, M.W., J.U. Kozyra, and M.F. Thomsen (2001), Dominant role of the asymmetric ring current in producing the stormtime Dst, J. Geophys. Res. 106, A6, 10883–10904, DOI: 10.1029/2000JA000326.

    Article  Google Scholar 

  • Mandea, M., and G. Balasis (2006), The SGR 1806-20 magnetar signature on the Earth’s magnetic field, Geophys. J. Int. 167, 586–591, DOI: 10.1111/j.1365-246X.2006.03125.x (see report http://www.sciencemag.org/content/vol314/issue5798/twil.dtl).

    Article  Google Scholar 

  • Maynard, N.C., W.J. Burke, E.M. Basinska, G.M. Erickson, W.J. Hughes, H.J. Singer, A.G. Yahnin, D.A. Hardy, and F.S. Mozer (1996), Dynamics of the inner magnetosphere near times of substorm onsets, J. Geophys. Res. 101, A4, 7705–7736, DOI: 10.1029/95JA03856.

    Article  Google Scholar 

  • Mikhailov, A.V., V.H. Depuev, and A.H. Depueva (2007), Short-term foF2 forecast: Present day state of art. In: J. Lilensten (ed.), Space Weather: Research Towards Applications in Europe, Astrophysics and Space Science Library, 344, 169–184, Springer, Dordrecht, DOI: 10.1007/1-4020-5446-7.

    Google Scholar 

  • Milillo, A., S. Orsini, and I.A. Daglis (2001), Empirical model of proton fluxes in the equatorial inner magnetosphere: Development, J. Geophys. Res. 106, A11, 25,713–25,729, DOI: 10.1029/2000JA900158.

    Article  Google Scholar 

  • Muhtarov, P., I. Kutiev, and L. Cander (2002), Geomagnetically correlated autoregression model for short-term prediction of ionospheric parameters, Inverse Problems 18, 1, 49–65.

    Article  Google Scholar 

  • Palmroth, M., T.I. Pulkkinen, P. Janhunen, and C.-C. Wu (2003), Stormtime energy transfer in global MHD simulation, J. Geophys. Res. 108, A1, 1048, DOI: 101029/2002JA009446.

    Article  Google Scholar 

  • Palmroth, M., P. Janhunen, T.I. Pulkkinen, and H.E.J. Koskinen (2004), Ionospheric energy input as a function of solar wind parameters: Global MHD simulation results, Ann. Geophys. 22, 549–566.

    Google Scholar 

  • Palmroth, M., P. Janhunen, T.I. Pulkkinen, A. Aksnes, G. Lu, N. Ostgaard, J. Watermann, G.D. Reeves, and G.A. Germany (2005), Assessment of ionospheric Joule heating by GUMICS-4 MHD simulation, AMIE, and satellitebased statistics: Towards a synthesis, Ann. Geophys. 23, 2051–2068.

    Google Scholar 

  • Palmroth, M., P. Janhunen, G.A. Germany, D. Lummerzheim, K. Liou, D.N. Baker, C. Barth, A.T. Weatherwax, and J. Watermann (2006a), Precipitation and total power consumption in the ionosphere: Global MHD simulation results compared with Polar and SNOE observations, Ann. Geophys. 24, 861–872.

    Google Scholar 

  • Palmroth, M., T.V. Laitinen, and T.I. Pulkkinen (2006b), Magnetopause energy and mass transfer: Results from a global MHD simulation, Ann. Geophys. 24, 3467–3480.

    Article  Google Scholar 

  • Palmroth, M., P. Janhunen, and T.I. Pulkkinen (2006c), Hysteresis in solar wind power input to the magnetosphere, Geophys. Res. Lett. 33, L03107, DOI: 10.1029/2005GL025188.

    Article  Google Scholar 

  • Proelss, G.W. (1995), Ionospheric F-region storms, Handbook of Atmospheric Electrodynamics, vol. II, 195–248, CRC Press.

    Google Scholar 

  • Sarris, T.E, X. Li, N. Tsaggas, and N. Paschalidis (2002), Modeling energetic particle injections in dynamic pulse fields with varying propagation speeds, J. Geophys. Res. 107, A3, 1033, DOI: 10.1029/2001JA900166.

    Article  Google Scholar 

  • Sitnov, M.I., A.S. Sharma, K. Papadopoulos, and D. Vassiliadis (2001), Modeling substorm dynamics of the magnetosphere: From self-organization and self-organized criticality to nonequilibrium phase transitions, Phys. Rev. E 65, 016116, DOI: 10.1103/PhysRevE.65.016116.

    Article  Google Scholar 

  • Stern, D.P. (1975), The motion of a proton in the equatorial magnetosphere, J. Geophys. Res. 80, 595–599, DOI: 10.1029/JA080i004p00595.

    Article  Google Scholar 

  • Tsagouri, I., and A. Belehaki (2006), A new empirical model of middle latitude ionospheric response for space weather applications, Adv. Space Res. 37, 420–425, DOI: 10.1016/j.asr.2005.07.048.

    Article  Google Scholar 

  • Tsagouri, I., and A. Belehaki (2008), An upgrade of the solar wind driven empirical model for the middle latitude ionospheric storm-time response, J. Atmos. Sol.-Terr. Phys. submitted.

  • Tsagouri, I., A. Belehaki, G. Moraitis, and H. Mavromihalaki (2000), Positive and negative ionospheric disturbances at middle latitudes during geomagnetic storms, Geophys. Res. Lett. 27, 21, 3579–3582, DOI: 10.1029/200GL003743.

    Article  Google Scholar 

  • Tsyganenko, N.A. (1989), A magnetospheric magnetic field model with a warped tail current sheet, Planet. Space Sci. 37, 1, 5–20.

    Article  Google Scholar 

  • Tu, J.-N., K. Tsuruda, H. Hayakawa, A. Matsuoka, T. Mukai, I. Nagano, and S. Yagitani (2000), Statistical nature of impulsive electric fields associated with fast ion flow in the near-Earth plasma sheet, J. Geophys. Res. 105, 18,901–18,907, DOI: 10.1029/1999JA000428.

    Article  Google Scholar 

  • Volland, H. (1973), A semi-empirical model of large-scale magnetospheric electric field, J. Geophys. Res. 78, 171–180, DOI: 10.1029/JA078i001p00171.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis A. Daglis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daglis, I.A., Balasis, G., Ganushkina, N. et al. Investigating dynamic coupling in geospace through the combined use of modeling, simulations and data analysis. Acta Geophys. 57, 141–157 (2009). https://doi.org/10.2478/s11600-008-0055-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-008-0055-5

Key words

Navigation