Skip to main content
Log in

Absorbing boundary conditions in a fourth-order accurate SH-wave staggered grid finite difference algorithm

  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

This article presents the implementation of two well known absorbing boundary conditions in a fourth-order accurate staggered grid SH-wave finite difference (FD) algorithm with variable grid size, in a very simplified manner. Based on simulated results, it was confirmed that the Clayton and Engquist absorbing boundary condition causes edge-reflections in case of larger angle of incidence of body waves on the model edges. The results of various numerical experiments revealed that the Israeli and Orszag sponge boundary condition is efficient enough to avoid edge-reflections for any angle of incidence of the body. We recommend the use of both the Clayton and Engquist and Israeli and Orszag absorbing boundary conditions simultaneously to avoid any edge-reflections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Boore, D.M. (1972), Finite difference methods for seismic wave propagation in heterogeneous materials. In: B.A. Bolt (ed.), Methods in Computational Physics, vol. 11, Academic Press, New York.

    Google Scholar 

  • Cerjan, C., D. Kosloff, R. Kosloff, and M. Reshef (1985), A nonreflecting boundary condition for discrete acoustic and elastic wave equations, Geophysics 50, 705–708, DOI: 10.1190/1.1441945.

    Article  Google Scholar 

  • Clayton, R.W., and B. Engquist (1977), Absorbing boundary conditions for acoustic and elastic wave equations, Bull. Seism. Soc. Am. 67, 1529–1540.

    Google Scholar 

  • Chew, W.C., and Q.H. Liu (1996), Perfectly matched layers for elastodynamics: a new absorbing boundary condition, J. Comp. Acoustics 4, 341–359, DOI: 10.1142/S0218396X96000118.

    Article  Google Scholar 

  • Dablain, M.A. (1986), The application of high-order differencing to the scalar wave equation, Geophysics 51, 54–66, DOI: 10.1190/1.1442040.

    Article  Google Scholar 

  • Graves, R.W. (1996), Simulating seismic wave propagation in 3-D elastic media using staggered grid finite difference, Bull. Seism. Soc. Am. 86, 1091–1107.

    Google Scholar 

  • Israeli, M., and S.A. Orszag (1981), Approximation of radiation boundary conditions, J. Comp. Phys. 41, 115–135.

    Article  Google Scholar 

  • Jastram, C., and E. Tessmer (1994), Elastic modelling on a grid with vertically varying spacing, Geophys. Prosp. 42, 357–370, DOI: 10.1111/j.1365-2478.1994.tb00215.x.

    Article  Google Scholar 

  • Levander, A.R. (1988), Fourth-order finite difference P-SV seismograms, Geophysics 53, 1425–1436, DOI: 10.1190/1.1442422.

    Article  Google Scholar 

  • Luo, Y., and G. Schuster (1990), Parsimonious staggered grid finite differencing of the wave equation, Geophys. Res. Lett. 17, 155–158.

    Article  Google Scholar 

  • Lysmer, J., and R.L. Kuhlmeyer (1969), Finite dynamic mode in infinite media, J. Eng. Mech. Dyn. 95, 859–877.

    Google Scholar 

  • Madariaga, R. (1976), Dynamics of an expanding circular fault, Bull. Seism. Soc. Am. 66, 639–666.

    Google Scholar 

  • Miyatake, T. (1980), Numerical simulation of earthquake source process by a threedimensional crack model. Part I: Rupture process, J. Phys. Earth 28, 565–598.

    Google Scholar 

  • Moczo, P. (1989), Finite-difference technique for SH-waves in 2-D media using irregular grids-application to the seismic response problem, Geophys. J. Int. 99, 321–329, DOI: 10.1111/j.1365-246X.1989.tb01691.x.

    Article  Google Scholar 

  • Moczo, P., J. Kristek, and E. Bystricky (2000), Stability and grid dispersion of the PSV 4th-order-staggered-grid finite-difference scheme, Stud. Geophys. Geod. 44, 381–402, DOI: 10.1023/A:1022112620994.

    Article  Google Scholar 

  • Moczo, P., J. Kristek, V. Vavrycuk, R.J. Archuleta, and L. Halada (2002), 3D heterogeneous staggered-grid finite-difference modelling of seismic motion with volume harmonic and arithmetic averaging of elastic moduli and densities, Bull. Seism. Soc. Am. 92, 3042–3066.

    Article  Google Scholar 

  • Narayan, J.P. (2001a), Site specific strong ground motion prediction using 2.5-D modelling, Geophys. J. Int. 146, 269–281, DOI: 10.1046/j.0956-540x.2001.01424.x.

    Article  Google Scholar 

  • Narayan, J.P. (2001b), Site specific ground motion prediction using 3-D modelling, ISET J. Earthq. Techn. 38, 17–29.

    Google Scholar 

  • Narayan, J.P. (2003), 2.5D simulation of basin-edge effects on the ground motion characteristics, J. Earth System Sci. 112, 463–469, DOI: 10.1007/BF02709272.

    Article  Google Scholar 

  • Narayan, J.P. (2005), Study of basin-edge effects on the ground motion characteristics using 2.5-D Modeling, Pure Appl. Geophys. 162, 273–289.

    Article  Google Scholar 

  • Narayan, J.P., and S. Kumar (2008), A (2, 4) parsimonious staggered grid SH-wave FD algorithm with variable grid size and VGR-stress imagining technique, Pure Appl. Geophys. 165, 271–295.

    Article  Google Scholar 

  • Narayan, J.P., and A. Ram (2006), Study of effects of underground ridge on the ground motion characteristics, Geophys. J. Int. 165, 180–196, DOI: 10.1111/j.1365-246X.2006.02874.x.

    Article  Google Scholar 

  • Narayan, J.P., and S.P. Singh (2006), Effects of soil layering on the characteristics of basin-edge induced surface waves and differential ground motion, J. Earthquake. Eng. 10, 595–614, DOI: 10.1142/S1363246906002773.

    Article  Google Scholar 

  • Ohminato, T., and B.A. Chouet (1997), A free surface boundary condition for including 3-D topography in the finite difference method, Bull. Seism. Soc. Am. 87, 494–515.

    Google Scholar 

  • Oprsal, I., and J. Zahradnik (2002), Three-dimensional finite difference method and hybrid modeling of earthquake ground motion, J. Geophys. Res. 107 (B8), 2161, DOI: 10.1029/2000JB000082.

    Article  Google Scholar 

  • Pitarka, A. (1999), 3-D elastic finite difference modelling of seismic motion using staggered grids with variable spacing, Bull. Seism. Soc. Am. 89, 54–68.

    Google Scholar 

  • Sochacki, J., R. Kubichek, J. George, W.R. Fletcher, and S. Smithson (1987), Absorbing boundary conditions and surface waves, Geophysics 52, 60–71.

    Article  Google Scholar 

  • Virieux, J. (1984), SH wave propagation in heterogeneous media, velocity stress finite-difference method, Geophysics 49, 1933–1957.

    Article  Google Scholar 

  • Wang, Y., J. Xu, and G.T. Schuster (2001), Viscoelastic wave simulation in basin by a variable-grid finite difference method, Bull. Seism. Soc. Am. 91, 1741–1749.

    Article  Google Scholar 

  • Zahradnik, J.P., P. Moczo, and F. Hron (1993), Testing four elastic finite difference schemes for behaviour at discontinuities, Bull. Seism. Soc. Am. 83, 107–129.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, S., Narayan, J.P. Absorbing boundary conditions in a fourth-order accurate SH-wave staggered grid finite difference algorithm. Acta Geophys. 56, 1090–1108 (2008). https://doi.org/10.2478/s11600-008-0043-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-008-0043-9

Key words

Navigation