Acta Geophysica

, Volume 56, Issue 1, pp 142–166 | Cite as

Turbulent measurements in the stable atmospheric boundary layer during SHEBA: ten years after

  • Andrey A. Grachev
  • Edgar L. Andreas
  • Christopher W. Fairall
  • Peter S. Guest
  • P. Ola G. Persson
Article

Abstract

This paper surveys results of the comprehensive turbulent measurements in the stable boundary layer (SBL) made over the Arctic pack ice during the Surface Heat Budget of the Arctic Ocean experiment (SHEBA) in the Beaufort Gyre from October 1997 through September 1998. Turbulent fluxes and mean meteorological data were continuously measured and reported hourly at five levels on a 20-m main SHEBA tower. Eleven months of measurements during SHEBA cover a wide range of stability conditions, from the weakly unstable regime to very stable stratification, and allow studying the SBL in detail.

A brief overview of the SBL regimes, the flux-profile relationships, the turbulent Prandtl number, and other parameters obtained during SHEBA is given. The traditional Monin—Obukhov approach, z-less scaling, and gradient-based scaling are evaluated and discussed based on the data from SHEBA.

Key words

flux-profile relationships Monin-Obukhov similarity theory Richardson number SHEBA stable boundary layer turbulent Prandtl number 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andreas, E.L, and B.B. Hicks (2002), Comments on “Critical test of the validity of Monin-Obukhov similarity during convective conditions”, J. Atmos. Sci. 59, 2605–2607.CrossRefGoogle Scholar
  2. Andreas, E.L, C.W. Fairall, P.S. Guest, and P.O.G. Persson (1999), An overview of the SHEBA atmospheric surface flux program, Proc. Fifth Conf. Polar Meteorology and Oceanography, Dallas, TX, Amer. Meteorol. Soc. 550–555.Google Scholar
  3. Andreas, E.L, K.J. Claffey, and A.P. Makshtas (2000), Low-level atmospheric jets and inversions over the Western Weddell Sea, Bound.-Layer Meteor. 97, 459–486.CrossRefGoogle Scholar
  4. Andreas, E.L, P.S. Guest, P.O.G. Persson, C.W. Fairall, T.W. Horst, R.E. Moritz, and S.R. Semmer (2002), Near-surface water vapor over sea ice is always near ice saturation, J. Geophys. Res. 107, C10, DOI: 10.1029/2000JC000411.CrossRefGoogle Scholar
  5. Andreas, E.L, C.W. Fairall, A.A. Grachev, P.S. Guest, T.W. Horst, R.E. Jordan, and P.O.G. Persson (2003), Turbulent transfer coefficients and roughness lengths over sea ice: the SHEBA results, Seventh Conf. Polar Meteorology and Oceanography and Joint Symposium on High-Latitude Climate Variations, 12–16 May 2003, Hyannis, Massachusetts, Amer. Meteorol. Soc. (preprint CD-ROM).Google Scholar
  6. Andreas, E.L, K.J. Claffey, R.E. Jordan, C.W. Fairall, P.S. Guest, P.O.G. Persson, and A.A. Grachev (2006), Evaluations of the von Kármán constant in the atmospheric surface layer, J. Fluid Mech. 559, 117–149.CrossRefGoogle Scholar
  7. Banta, R.M., L. Mahrt, D. Vickers, J. Sun, B.B. Balsley, Y.L. Pichugina, and E.J. Williams (2007), The very stable boundary layer on nights with weak low-level jets, J. Atmos. Sci. 64, 9, 3068–3090.CrossRefGoogle Scholar
  8. Baas, P., G.J. Steeneveld, B.J.H. van de Wiel, and A.A.M. Holtslag (2006), Exploring self-correlation in flux-gradient relationships for stably stratified conditions, J. Atmos. Sci. 63, 11, 3045–3054.CrossRefGoogle Scholar
  9. Beljaars, A.C.M., and A.A.M. Holtslag (1991), Flux parameterization over land surfaces for atmospheric models, J. Appl. Meteor. 30, 3, 327–341.CrossRefGoogle Scholar
  10. Beyrich, F. (1997), Mixing height estimation from sodar — a critical discussion, Atm. Environ. 21, 3941–3953.Google Scholar
  11. Businger, J.A., J.C. Wyngaard, Y. Izumi, and E.F. Bradley (1971), Flux-profile relationships in the atmospheric surface layer, J. Atmos. Sci. 28, 181–189.CrossRefGoogle Scholar
  12. Cheng, Y., and W. Brutsaert (2005), Flux-profile relationships for wind speed and temperature in the stable atmospheric boundary layer, Bound.-Layer Meteor. 114, 3, 519–538.CrossRefGoogle Scholar
  13. Claffey, K.A., E.L Andreas, D.K. Perovich, C.W. Fairall, P.S. Guest, and P.O.G. Persson (1999), Surface temperature measurements at SHEBA, Proc. Fifth Conf. Polar Meteorology and Oceanography, Dallas, TX, Amer. Meteorol. Soc., 327–332.Google Scholar
  14. Dabberdt, W.F. (1970), A selective climatology of Plateau Station, Antarctica, J. Appl. Meteor. 9, 2, 311–315.CrossRefGoogle Scholar
  15. Dyer, A.J. (1974), A review of flux-profile relationships, Bound.-Layer Meteor. 7, 363–372.CrossRefGoogle Scholar
  16. Dyer, A.J., and E.F. Bradley (1982), An alternative analysis of flux-gradient relationships at the 1976 ITCE, Bound.-Layer Meteor. 22, 3–19.CrossRefGoogle Scholar
  17. Forrer, J., and M.W. Rotach (1997), On the turbulence structure in the stable boundary layer over the Greenland ice sheet, Bound.-Layer Meteor. 85, 111–136.CrossRefGoogle Scholar
  18. Garratt, J.R. (1992), The Atmospheric Boundary Layer, Cambridge University Press, Cambridge, 316 pp.Google Scholar
  19. Grachev, A.A., C.W. Fairall, P.O.G. Persson, E.L Andreas, and P.S. Guest (2002), Stable boundary-layer regimes observed during the SHEBA experiment, Proc. 15th Symp. Boundary Layers and Turbulence, Wageningen, The Netherlands, Amer. Meteorol. Soc., 374–377.Google Scholar
  20. Grachev, A.A., C.W. Fairall, P.O.G. Persson, E.L Andreas, P.S. Guest, and R.E. Jordan (2003), Turbulence decay in the stable arctic boundary layer, Seventh Conf. Polar Meteorology and Oceanography and Joint Symp. High-Latitude Climate Variations, Hyannis, Massachusetts, Amer. Meteorol. Soc. (preprint CD-ROM).Google Scholar
  21. Grachev, A.A., C.W. Fairall, P.O.G. Persson, E.L Andreas, and P.S. Guest (2005), Stable boundary-layer scaling regimes: the SHEBA data, Bound.-Layer Meteor. 116, 2, 201–235.CrossRefGoogle Scholar
  22. Grachev, A.A., E.L Andreas, C.W. Fairall, P.S. Guest, and P.O.G. Persson (2007a), SHEBA flux-profile relationships in the stable atmospheric boundary layer, Bound.-Layer Meteor. 124, 3, 315–333.CrossRefGoogle Scholar
  23. Grachev, A.A., E.L Andreas, C.W. Fairall, P.S. Guest, and P.O.G. Persson (2007b), On the turbulent Prandtl number in the stable atmospheric boundary layer, Bound.-Layer Meteor. 125, 2, 329–341.CrossRefGoogle Scholar
  24. Hicks, B.B. (1978a), Some limitations of dimensional analysis and power laws, Bound.-Layer Meteor. 14, 4, 567–569.CrossRefGoogle Scholar
  25. Hicks, B.B. (1978b), Comments on “The characteristics of turbulent velocity components in the surface layer under convective conditions” by H.A. Panofsky et al., Bound.-Layer Meteor. 15, 2, 255–258.Google Scholar
  26. Högström, U. (1988), Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation, Bound.-Layer Meteor. 42, 55–78.CrossRefGoogle Scholar
  27. Holtslag, A.A.M., and F.T.M. Nieuwstadt (1986), Scaling the atmospheric boundary layer, Bound.-Layer Meteor. 36, 201–209.CrossRefGoogle Scholar
  28. Howell, J.F., and J. Sun (1999), Surface-layer fluxes in stable conditions, Bound.-Layer Meteor. 90, 495–520.CrossRefGoogle Scholar
  29. Huwald, H., L.-B. Tremblay, and H. Blatter (2005), Reconciling different observational data sets from surface heat budget of the Arctic Ocean (SHEBA) for model validation purposes, J. Geophys. Res. 110, C5, C05009, DOI: 10.1029/2003JC002221.Google Scholar
  30. Intrieri, J.M., C.F. Fairall, M.D. S hupe, O.G.P. Persson, E.L Andreas, P. Guest, and R.M. Moritz (2002), Annual cycle of cloud forcing over the Arctic, J. Geophys. Res. 107, C10, DOI: 10.1029/2000JC000439.Google Scholar
  31. King, J.C. (1990), Some measurements of turbulence over an Antarctic shelf, Quart. J. Roy. Meteor. Soc. 116, 379–400.CrossRefGoogle Scholar
  32. Klipp, C.L., and L. Mahrt (2004), Flux-gradient relationship, self-correlation and intermittency in the stable boundary layer, Quart. J. Roy. Meteor. Soc. 130, 601, 2087–2103.CrossRefGoogle Scholar
  33. Klipp, C.L., and L. Mahrt (2006), Response to “Comments on “Flux-gradient relationship, selfcorrelation and intermittency in the stable boundary layer”, Quart. J. Roy. Meteor. Soc. 132, 617B, 1375.CrossRefGoogle Scholar
  34. Lange, B., H.K. Johnson, S. Larsen, J. Højstrup, H. Kofoed-Hansen, and M.J. Yelland (2004), On detection of a wave age dependency for the sea surface roughness, J. Phys. Oceanogr. 34, 6, 1441–1458.CrossRefGoogle Scholar
  35. Lettau, H.H., and W.F. Dabberdt (1970), Variangular wind spirals, Bound.-Layer Meteor. 1, 1, 64–79.CrossRefGoogle Scholar
  36. Lettau, H., A. Riordan, and M. Kuhn (1977), Air temperature and two-dimensional wind profiles in the lowest 32 meters as a function of bulk stability. In: J.A. Businger (ed.), Meteorological Studies at Plateau Station, Antarctica, Antarctic Research Series, Amer. Geophys. Union 25, 77–91.Google Scholar
  37. Mahrt, L. (1998), Stratified atmospheric boundary layers and breakdown of models, Theor. Comp. Fluid. Dynam. 11, 263–279.CrossRefGoogle Scholar
  38. Mahrt, L. (1999), Stratified atmospheric boundary layers, Bound.-Layer Meteor. 90, 3, 375–396.CrossRefGoogle Scholar
  39. Mahrt, L., and D. Vickers (2002), Contrasting vertical structures of nocturnal boundary layers, Bound.-Layer Meteor. 105, 2, 351–363.CrossRefGoogle Scholar
  40. Mahrt, L., and D. Vickers (2006), Extremely weak mixing in stable conditions, Bound.-Layer Meteor. 119, 1, 19–39.CrossRefGoogle Scholar
  41. Mahrt, L., J. Sun, W. Blumen, T. Delany, and S. Oncley (1998), Nocturnal boundary-layer regimes, Bound.-Layer Meteor. 88, 255–278.CrossRefGoogle Scholar
  42. Mauritsen, T., and G. Svensson (2007), Observations of stably stratified shear-driven atmospheric turbulence at low and high Richardson numbers, J. Atmos. Sci. 64, 2, 645–655.CrossRefGoogle Scholar
  43. Monin, A.S., and A.M. Obukhov (1954), Basic laws of turbulent mixing in the surface layer of the atmosphere, Trudy Geofiz. Inst. Acad. Nauk SSSR 24, 163–187.Google Scholar
  44. Monin, A.S., and A.M. Yaglom (1971), Statistical Fluid Mechanics: Mechanics of Turbulence, Vol. 1, MIT Press, Cambridge, MA, 769 pp.Google Scholar
  45. Nieuwstadt, F.T.M. (1984), The turbulent structure of the stable, nocturnal boundary layer, J. Atmos. Sci. 41, 14, 2202–2216.CrossRefGoogle Scholar
  46. Obukhov, A.M. (1946), Turbulence in an atmosphere with a non-uniform temperature, Trudy Inst. Teoret. Geofiz. Akad. Nauk SSSR 1, 95–115.Google Scholar
  47. Obukhov, A.M. (1971), Turbulence in an atmosphere with a non-uniform temperature, Bound.-Layer Meteor. 2, 2–29.CrossRefGoogle Scholar
  48. Pahlow, M., M.B. Parlange, and F. Porté-Agel (2001), On Monin-Obukhov similarity in the stable atmospheric boundary layer, Bound.-Layer Meteor. 99, 225–248.CrossRefGoogle Scholar
  49. Pardyjak, E.R., P. Monti, and H.J.S. Fernando (2002), Flux Richardson number measurements in stable atmospheric shear flows, J. Fluid Mech. 449, 1, 307–316.CrossRefGoogle Scholar
  50. Persson, P.O.G., T. Uttal, J. Intrieri, C.W. Fairall, E.L Andreas, and P.S. Guest (1999), Observations of large thermal transitions during the Arctic night from a suite of sensors at SHEBA, Proc. Fifth Conf. Polar Meteorology and Oceanography, Dallas, TX, Amer. Meteorol. Soc., 306–309.Google Scholar
  51. Persson, P.O.G., C.W. Fairall, E.L Andreas, P.S. Guest, and D.K. Perovich (2002), Measurements near the Atmospheric Surface Flux Group tower at SHEBA: near-surface conditions and surface energy budget, J. Geophys. Res. 107, C10, 8045, DOI: 10.1029/2000JC000705.CrossRefGoogle Scholar
  52. Russell, C.A., C.W. Fairall, P.O.G. Persson, E.L Andreas, P.S. Guest, R. Lindsay, H.A. Eide, and T. Horst (1999), Intercomparison of downward longwave flux measurements during the first two months of SHEBA, Proc. Fifth Conf. Polar Meteorology and Oceanography, Dallas, TX, Amer. Meteorol. Soc., 314–318.Google Scholar
  53. Smedman, A.-S. (1988), Observations of a multi-level turbulence structure in a very stable atmospheric boundary layer, Bound.-Layer Meteor. 44, 231–253.CrossRefGoogle Scholar
  54. Sorbjan, Z. (1989), Structure of the Atmospheric Boundary Layer, Prentice-Hall, NJ, 317 pp.Google Scholar
  55. Sorbjan, Z. (2006a), Local structure of turbulence in stably-stratified boundary layers, J. Atmos. Sci. 63, 5, 1526–1537.CrossRefGoogle Scholar
  56. Sorbjan, Z. (2006b), Comments on “Flux-gradient relationship, self-correlation and intermittency in the stable boundary layer”, Quart. J. Roy. Meteor. Soc. 132, 617B, 1371–1373.CrossRefGoogle Scholar
  57. Sorbjan, Z. (2008), Gradient-based similarity in the atmospheric boundary layer, Acta Geophys. (this issue).Google Scholar
  58. Uttal, T., and 27 co-authors (2002), Surface heat budget of the Arctic Ocean, Bull. Amer. Meteor. Soc. 83, 2, 255–276.CrossRefGoogle Scholar
  59. Webb, E.K. (1970), Profile relationships: the log-linear range, and extension to strong stability, Quart. J. Roy. Meteor. Soc. 96, 67–90.CrossRefGoogle Scholar
  60. Wyngaard, J.C. (1973), On surface-layer turbulence. In: D.A. Haugen (ed.), Workshop on Micrometeorology, Boston, Mass., Amer. Meteorol. Soc. 101–149.Google Scholar
  61. Wyngaard, J.C., and O.R. Cote (1972), Cospectral similarity in the atmospheric surface layer, Quart. J. Roy. Meteor. Soc. 98, 590–603.CrossRefGoogle Scholar
  62. Yaglom, A.M. (1977), Comments on Wind and Temperature Flux-Profile Relationships, Bound.-Layer Meteor. 11, 89–102.CrossRefGoogle Scholar
  63. Yague, C., G. Maqueda, and J.M. Rees (2001), Characteristics of turbulence in the lower atmosphere at Halley IV Station, Antarctica, Dyn. Atmos. Ocean. 34, 205–223.CrossRefGoogle Scholar
  64. Yague, C., S. Viana, G. Maqueda, and J.M. Redondo (2006), Influence of stability on the fluxprofile relationships for wind speed, ϕm, and temperature, ϕh, for the stable atmospheric boundary layer, Nonlin. Processes Geophys. 13, 2, 185–203.CrossRefGoogle Scholar
  65. Zilitinkevich, S.S., and D.V. Chalikov (1968), Determining the universal wind-velocity and temperature profiles in the atmospheric boundary layer, Izv. Acad. Sci. USSR, Atmos. Oceanic Phys. 4, 165–170 (English edition).Google Scholar
  66. Zilitinkevich, S.S., T. Elperin, N. Kleeorin, I. Rogachevskii, I. Esau, and T. Mauritsen (2006), Turbulent energies and Richardson numbers in stably stratified sheared flows, NATO ARWorkshop “Atmospheric planetary boundary layers (PBLs): nature, theory and application to environmental modelling and security”, 17–25 April, Dubrovnik, Croatia, available at http://pbl-nato-arw.dmi.dk/Presentations/Zilitinkevich.pdf.Google Scholar

Copyright information

© Institute of Geophysics, Polish Academy of Sciences 2008

Authors and Affiliations

  • Andrey A. Grachev
    • 1
    • 2
  • Edgar L. Andreas
    • 3
  • Christopher W. Fairall
    • 1
  • Peter S. Guest
    • 4
  • P. Ola G. Persson
    • 1
    • 2
  1. 1.NOAA Earth System Research LaboratoryBoulderUSA
  2. 2.Cooperative Institute for Research in Environmental SciencesUniversity of ColoradoBoulderUSA
  3. 3.NorthWest Research Associates, Inc. (Seattle Division)LebanonUSA
  4. 4.Naval Postgraduate SchoolMontereyUSA

Personalised recommendations