Acta Geophysica

, Volume 55, Issue 3, pp 398–409 | Cite as

Ionospheric specification and forecasting based on observations from European ionosondes participating in DIAS project

  • Anna Belehaki
  • Ljiljana Cander
  • Bruno Zolesi
  • Juergen Bremer
  • Christer Juren
  • Iwona Stanisławska
  • Dimitris Dialetis
  • Michael Hatzopoulos


There are two main objectives of the DIAS (European Digital Upper Atmosphere Server) project. First, it establishes a pan-European repository of raw and derived digital data describing the state of ionospheric part of the upper atmosphere, which is capable of ingesting real-time information and maintaining historical data collections provided by most operating ionospheric stations in Europe. Second, the DIAS system produces and distributes, based on the raw data collection, several operational products required by various user groups for ionospheric nowcasting, prediction and forecasting purposes. The project completed on May 2006 and the DIAS server operates since then continuously. The basic products that are delivered are real-time and historical ionograms from all DIAS-affiliated ionospheric stations, frequency plots and maps of the ionosphere over Europe based on the foF2, M(3000)F2, MUF and electron density parameters, as well as long term prediction and short term forecasting up to 24 hour ahead.

The paper describes use of the ionospheric measurements in the DIAS modelling techniques for specification, predict-tion and forecasting of the ionosphere over the European region, and details the final products available to the DIAS user community.

Key words

ionospheric specification ionospheric forecasting ionospheric propagation HF communications digisondes ionosondes DIAS project 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Belehaki, A., L. Cander, B. Zolesi, J. Bremer, C. Juren, I. Stanislawska, D. Dialetis, M. Hatzopoulos, 2005, DIAS Project: The establishment of a European digital upper atmosphere server, J. Atmos. Sol.-Terr. Phys. 67, 1092–1099.CrossRefGoogle Scholar
  2. Belehaki, A., L. Cander, B. Zolesi, J. Bremer, C. Juren, I. Stanislawska, D. Dialetis and M. Hatzopoulos, 2006a, Monitoring and forecasting the ionosphere over Europe: The DIAS project, Space Weather 4, S12002, doi:10.1029/2006SW000270.CrossRefGoogle Scholar
  3. Belehaki, A., L. Cander, B. Zolesi, J. Bremer, C. Juren, I. Stanislawska, D. Dialetis, M. Hatzopoulos and S. Gasperini, 2006b, Final Public Report of the DIAS Project,, August.Google Scholar
  4. Bremer, J., L.R. Cander, J. Mielich and R. Stamper, 2006, Derivation and test of ionospheric activity indices from real-time ionosonde observations in the European region, J. Atmos. Sol.-Terr. Phys., doi:10.1016/j.jastp.2006.07.003.Google Scholar
  5. Dominici, P., and B. Zolesi, 1987, A model for the normal ionosphere over Rome, Nuovo Cimento C Serie 1, 10C, 191–208.CrossRefGoogle Scholar
  6. Galkin, I.A., G.M. Khmyrov, A. Kozlov, B.W. Reinisch, X. Huang and D.F. Kitrosser, 2006, Ionosonde networking, databasing, and Web serving, Radio Science 41, 5, RS5S33.CrossRefGoogle Scholar
  7. Houminer, Z., J.A. Bennett and P.L. Dyson, 1993, Real-time ionospheric model updating, J. Electr. and Electronics Engineering, Australia, IE Aust. & IREE Aust. 13, 2, 99–104.Google Scholar
  8. Koutroumbas, K., and A. Belehaki, 2006, One-step ahead prediction of foF2 using time series forecasting techniques, Ann. Geophys. 23, 3035–3042.CrossRefGoogle Scholar
  9. Koutroumbas, K., I. Tsagouri and A. Belehaki, 2007, Time series autoregression technique implemented on-line in DIAS system for ionospheric forecast over Europe, Ann. Geophys. (submitted).Google Scholar
  10. Leitinger, R., S. Radicella and B. Nova, 2002, Electron density models for assessments studies — new developments, Acta Geod. Geoph. Hung. 37, 2-3, 183–193.CrossRefGoogle Scholar
  11. Lockwood, M., 1983, A simple M-factor algorithm for improved estimation of the basic maximum usable frequency of radio waves reflected from the ionospheric F region, Proc. IEE 130F, 296–302.Google Scholar
  12. Muhtarov, P., I. Kutiev and L.R. Cander, 2002, Geomagnetically correlated autoregression model for short-term prediction of ionospheric parameters, Inverse Problems 18, 49–65.CrossRefGoogle Scholar
  13. Stanisławska, I., G. Juchnikowski, R. Hanbaba, H. Rothkaehl, G. Sole and Z. Zbyszynski, 2000, COST251 recommended instantaneous mapping model of ionosphere characteristics — PLES, Phys. Chem. Earth (C) 25, 4, 291–294.Google Scholar
  14. Stanisławska, I., G. Juchnikowski and Z. Zbyszynski, 2001, Generation of instantaneous maps of ionospheric characteristics, Radio Science 36, 5, 1073–1081.CrossRefGoogle Scholar
  15. Stanisławska, I., H. Rothkaehl and D. Bureshova, 2004a, Limited-area electron concentration height profile instantaneous maps, Adv. Space Res. 33, 6, 874–877.CrossRefGoogle Scholar
  16. Stanisławska, I., D. Bureshova and H. Rothkaehl, 2004b, Stormy ionosphere mapping over Europe, Adv. Space Res. 33, 6, 917–919.CrossRefGoogle Scholar
  17. Thompson, R.J., D.G. Cole, G. Patterson and P.J. Wilkinson, 1998, Space weather services in Australia, Proc. ESA Workshop on Space Weather, 11–13 Nov. 1998, ESTEC, The Netherlands, Scholar
  18. Tsagouri, I., B. Zolesi, A. Belehaki and L.R. Cander, 2005, Evaluation of the performance of the real-time updated Simplified Ionospheric Regional Model for the European area, J. Atmos. Sol.-Terr. Phys. 67, 12, 1137–1146.CrossRefGoogle Scholar
  19. Zolesi., B., L.R. Cander and G. de Franceschi, 1993, Simplified Ionospheric Regional Model for telecommunication applications, Radio Science 28, 4, 603–612.CrossRefGoogle Scholar
  20. Zolesi, B., A. Belehaki, I. Tsagouri and L.R. Cander, 2004, Real-time updating of the Simplified Ionospheric Regional Model for operational applications, Radio Science 39, RS2011.CrossRefGoogle Scholar

Copyright information

© Institute of Geophysics, Polish Academy of Sciences 2007

Authors and Affiliations

  • Anna Belehaki
    • 1
  • Ljiljana Cander
    • 2
  • Bruno Zolesi
    • 3
  • Juergen Bremer
    • 4
  • Christer Juren
    • 5
  • Iwona Stanisławska
    • 6
  • Dimitris Dialetis
    • 7
  • Michael Hatzopoulos
    • 7
  1. 1.National Observatory of AthensAthensGreece
  2. 2.The CCLRC Rutherford Appleton LaboratoryChilton, DidcotUK
  3. 3.National Institute of Geophysics and VolcanologyRomaItaly
  4. 4.Leibniz Institute of Atmospheric PhysicsKühlungsbornGermany
  5. 5.Swedish Institute of Space PhysicsKirunaSweden
  6. 6.Space Research CenterPolish Academy of SciencesWarszawaPoland
  7. 7.University of AthensAthensGreece

Personalised recommendations