Skip to main content

Two models of parameterized convection for medium-sized icy satellites of Saturn

Abstract

A parameterized theory of convection is developed for 6 medium-size icy satellites (MIS) of Saturn. It is an extension of the research concerning the Mimas-Enceladus paradox. Two parameterizations of dimensionless temperature are used in the model and a new constrain for tidal heating is included. It is found that the basic results of the model are independent of particulars of the parameterizations. The new constrain considerably reduces the space of possible values of the material parameter of satellites but the two basic conclusions are unchanged, i.e.: (a) the thermal state of the considered MIS can be explained in the frame of the uniform model that includes radiogenic and tidal heating; (b) the theory indicates that endogenic activity of some MIS was (or is) a result of a specific ‘excited’, high temperature state of a given satellite. The theory could be also used for estimation of tidal heating.

This is a preview of subscription content, access via your institution.

References

  1. Barr, A.C., and R.T. Pappalardo, 2005, Onset of convection in the icy Galilean satellites: influence of rheology, J. Geophys. Res. 110, E12005, doi:10,11029/2004/JE002371.

  2. Christensen, U., 1984, Convection with pressure and temperature-dependent non-Newtonian rheology, Geophys. J. Roy. Astron. Soc. 77, 343–84.

    Google Scholar 

  3. Czechowski, L., 1993, Theoretical Approach to Mantle Convection. In: R. Teisseyre, L. Czechowski and J. Leliwa-Kopystyński (eds.), “Dynamics of the Earth’s Evolution”, Elsevier, Amsterdam, The Netherlands, 161–271.

    Google Scholar 

  4. Czechowski, L., 2004a, Parameterized model of convection driven by tidal and radiogenic heating, Presented on COSPAR, 18–25 July 2004, Paris, Session B0.5/D3.7/C3.4.

  5. Czechowski, L., 2004b, Convection driven by tidal heating: numerical model and parameterized theory, Paper presented on International Congress of Theoretical and Applied Mechanics (ICTAM) in August 2004, Warszawa.

  6. Czechowski, L., 2005, Endogenic activity of medium-size icy satellites of Saturn and eccentricities of their orbits (submitted).

  7. Czechowski, L., 2006, Parameterized model of convection driven by tidal and radiogenic heating, Adv. Space Res. (in print).

  8. Czechowski, L., and J. Leliwa-Kopystyński, 2003, Tidal heating and convection in medium sized icy satellites, Celest. Mech. and Dyn. Astr. 87, 157–169.

    Article  Google Scholar 

  9. Czechowski, L., and J. Leliwa-Kopystyński, 2005, Convection driven by tidal and radiogenic heating in medium sized icy satellites, Planet. Space Sci. 53, 749–769.

    Article  Google Scholar 

  10. De Pater, I., and J.J. Lissauer, 2001, Planetary Sciences, Cambridge Univ. Press, Cambridge, UK, pp. 528.

    Google Scholar 

  11. Dumoulin, C., M.-P. Doin and L. Fleitout, 1999, Heat transport in stagnant lid convection with temperature-and pressure-dependent Newtonian or non-Newtonian rheology, J. Geophys. Res. 104, 12 759–12 777.

    Article  Google Scholar 

  12. Durham, W.B., S.H. Kirby and L.A. Stern, 1998, Rheology of planetary ices. In: B. Schmitt, de C. Bergh and M. Festou (eds.), “Solar System Ices”, Kluwer Acad. Publ., Dordrecht, The Netherland, 63–78.

    Google Scholar 

  13. Ellsworth, K., and G. Schubert, 1983, Saturn icy satellites; thermal and structural models, Icarus 54, 490–510.

    Article  Google Scholar 

  14. Federico, C., and P. Lanciano, 1983, Thermal and structural evolution of four satellites of Saturn, Ann. Geophys. 1, 469–476.

    Google Scholar 

  15. Fischer, H.-J., and T. Spohn, 1990, Thermal-orbital histories of viscoelastic models of Io (Jl), Icarus 83, 39–65.

    Article  Google Scholar 

  16. Forni, O., A. Coradini and C. Federico, 1991, Convection and lithospheric strength in Dione, an icy satellite of Saturn, Icarus 94, 232–245.

    Article  Google Scholar 

  17. Gavrilov, S.V., and V.N. Zharkov, 1977, Love numbers of the giant planets, Icarus 32, 443–449.

    Article  Google Scholar 

  18. Goldsby, D.L., and D.L. Kohlstedt, 1997, Grain boundary sliding in fine-grained Ice-I, Scr. Mater. 37, 1399–1405.

    Article  Google Scholar 

  19. Hobbs, P.V., 1974, Ice Physics, Oxford Univ. Press, New York.

    Google Scholar 

  20. Jacobson, R.A., 2004, The orbits of the major Saturnian satellites and the gravity field of Saturn from spacecraft and Earthbased observations, submitted to Astron. J. (ssd.jpl.nasa.gov/sat_props.html).

  21. Kargel, J.S., and S. Pozio, 1996, The volcanic and tectonic history of Enceladus, Icarus 119, 385–404.

    Article  Google Scholar 

  22. Kossacki, K.J., and J. Leliwa-Kopystyński, 1993, Medium-size icy satellites: thermal and structural evolution during accretion, Planet. Space Sci. 41, 729–741.

    Article  Google Scholar 

  23. Lissauer, J.J., S.J. Peale and J.N. Cuzzi, 1984, Ring torque on Janus and the melting of Enceladus, Icarus 58, 159–168.

    Article  Google Scholar 

  24. McKinnon, W.B., 1998, Geodynamics of Icy Satellites. In: B. Schmitt, de C. Bergh and M. Festou (eds.), “Solar System Ices”, Kluwer Acad. Publ., Dordrecht, 525–550.

    Google Scholar 

  25. Officer, C.B., 1974, Introduction to Theoretical Geophysics, Springer-Verlag, Berlin.

    Google Scholar 

  26. Peale, S.J., 2003, Tidally induced volcanism, Celest. Mech. Dyn. Astr. 87, 129–155.

    Article  Google Scholar 

  27. Peale, S.J., P. Cassen and R.T. Reynolds, 1979, Melting of I 0 by tidal dissipation, Science 203, 892–894.

    Google Scholar 

  28. Peltier, W.R., and G.T. Jarvis, 1982, Whole mantle convection and the thermal evolution of the Earth, Phys. Earth Planet. Int. 29, 281–304.

    Article  Google Scholar 

  29. Poirier, J.P., L. Bloch and P. Chambon, 1983, Tidal dissipation in small viscoelastic ice moons: the case of Enceladus, Icarus 55, 218–230.

    Article  Google Scholar 

  30. Roscoe, R., 1952, The viscosity of suspensions of rigid spheres, British J. Appl. Phys. 3, 267–269.

    Article  Google Scholar 

  31. Ross, M.N., and G. Schubert, 1989, Viscoelastic models of tidal heating in Enceladus, Icarus 78, 90–101.

    Article  Google Scholar 

  32. Rothery, D.A., 1992, Satellites of the Outer Planets, Clarendon Press, Oxford.

    Google Scholar 

  33. Schubert, G., D. Stevenson and P. Cassen, 1980, Whole planet cooling and radiogenic heat source contents of the Earth and Moon, J. Geophys. Res. 85, 2511–2518.

    Google Scholar 

  34. Schubert, G., T. Spohn and R.T. Reynolds, 1986, Thermal histories, compositions and internal structures of the moons of the solar system. In: J.A. Burns and M.S. Matthews (eds.), “Satellites”, The University of Arizona Press, Tucson, 224–292.

    Google Scholar 

  35. Schubert, G., D.L. Turcotte and P. Olson, 2001, Mantle convection in the Earth and Planets. Cambridge Univ. Press, Cambridge, UK.

    Google Scholar 

  36. Sharpe, H.N., and W.R. Peltier, 1978, Parameterized mantle convection and the Earth’s thermal history, Geophys. Res. Lett. 5, 737–740.

    Google Scholar 

  37. Spann, N.A., J.W. Head and R.T. Pappalardo, 2002, The spacing distances of chaos and lenticulae on Europa, Lunar and Planet. Sci. 33, 1723.pdf.

  38. Squyres, S.W., R.T. Reynolds, P.M. Cassen and S.J. Peale, 1983, The evolution of Enceladus, Icarus 53, 319–331.

    Article  Google Scholar 

  39. Turcotte, D.L., and G. Schubert, 1982, Geodynamics, J. Wiley and Sons, New York, pp. 450.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Czechowski, L. Two models of parameterized convection for medium-sized icy satellites of Saturn. Acta Geophys. 54, 280–302 (2006). https://doi.org/10.2478/s11600-006-0021-z

Download citation

Key words

  • medium-size satellites
  • tides
  • thermal evolution
  • tectonics
  • volcanism
  • parameterized theory of convection