Skip to main content
Log in

Two models of parameterized convection for medium-sized icy satellites of Saturn

  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

A parameterized theory of convection is developed for 6 medium-size icy satellites (MIS) of Saturn. It is an extension of the research concerning the Mimas-Enceladus paradox. Two parameterizations of dimensionless temperature are used in the model and a new constrain for tidal heating is included. It is found that the basic results of the model are independent of particulars of the parameterizations. The new constrain considerably reduces the space of possible values of the material parameter of satellites but the two basic conclusions are unchanged, i.e.: (a) the thermal state of the considered MIS can be explained in the frame of the uniform model that includes radiogenic and tidal heating; (b) the theory indicates that endogenic activity of some MIS was (or is) a result of a specific ‘excited’, high temperature state of a given satellite. The theory could be also used for estimation of tidal heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Barr, A.C., and R.T. Pappalardo, 2005, Onset of convection in the icy Galilean satellites: influence of rheology, J. Geophys. Res. 110, E12005, doi:10,11029/2004/JE002371.

  • Christensen, U., 1984, Convection with pressure and temperature-dependent non-Newtonian rheology, Geophys. J. Roy. Astron. Soc. 77, 343–84.

    Google Scholar 

  • Czechowski, L., 1993, Theoretical Approach to Mantle Convection. In: R. Teisseyre, L. Czechowski and J. Leliwa-Kopystyński (eds.), “Dynamics of the Earth’s Evolution”, Elsevier, Amsterdam, The Netherlands, 161–271.

    Google Scholar 

  • Czechowski, L., 2004a, Parameterized model of convection driven by tidal and radiogenic heating, Presented on COSPAR, 18–25 July 2004, Paris, Session B0.5/D3.7/C3.4.

  • Czechowski, L., 2004b, Convection driven by tidal heating: numerical model and parameterized theory, Paper presented on International Congress of Theoretical and Applied Mechanics (ICTAM) in August 2004, Warszawa.

  • Czechowski, L., 2005, Endogenic activity of medium-size icy satellites of Saturn and eccentricities of their orbits (submitted).

  • Czechowski, L., 2006, Parameterized model of convection driven by tidal and radiogenic heating, Adv. Space Res. (in print).

  • Czechowski, L., and J. Leliwa-Kopystyński, 2003, Tidal heating and convection in medium sized icy satellites, Celest. Mech. and Dyn. Astr. 87, 157–169.

    Article  Google Scholar 

  • Czechowski, L., and J. Leliwa-Kopystyński, 2005, Convection driven by tidal and radiogenic heating in medium sized icy satellites, Planet. Space Sci. 53, 749–769.

    Article  Google Scholar 

  • De Pater, I., and J.J. Lissauer, 2001, Planetary Sciences, Cambridge Univ. Press, Cambridge, UK, pp. 528.

    Google Scholar 

  • Dumoulin, C., M.-P. Doin and L. Fleitout, 1999, Heat transport in stagnant lid convection with temperature-and pressure-dependent Newtonian or non-Newtonian rheology, J. Geophys. Res. 104, 12 759–12 777.

    Article  Google Scholar 

  • Durham, W.B., S.H. Kirby and L.A. Stern, 1998, Rheology of planetary ices. In: B. Schmitt, de C. Bergh and M. Festou (eds.), “Solar System Ices”, Kluwer Acad. Publ., Dordrecht, The Netherland, 63–78.

    Google Scholar 

  • Ellsworth, K., and G. Schubert, 1983, Saturn icy satellites; thermal and structural models, Icarus 54, 490–510.

    Article  Google Scholar 

  • Federico, C., and P. Lanciano, 1983, Thermal and structural evolution of four satellites of Saturn, Ann. Geophys. 1, 469–476.

    Google Scholar 

  • Fischer, H.-J., and T. Spohn, 1990, Thermal-orbital histories of viscoelastic models of Io (Jl), Icarus 83, 39–65.

    Article  Google Scholar 

  • Forni, O., A. Coradini and C. Federico, 1991, Convection and lithospheric strength in Dione, an icy satellite of Saturn, Icarus 94, 232–245.

    Article  Google Scholar 

  • Gavrilov, S.V., and V.N. Zharkov, 1977, Love numbers of the giant planets, Icarus 32, 443–449.

    Article  Google Scholar 

  • Goldsby, D.L., and D.L. Kohlstedt, 1997, Grain boundary sliding in fine-grained Ice-I, Scr. Mater. 37, 1399–1405.

    Article  Google Scholar 

  • Hobbs, P.V., 1974, Ice Physics, Oxford Univ. Press, New York.

    Google Scholar 

  • Jacobson, R.A., 2004, The orbits of the major Saturnian satellites and the gravity field of Saturn from spacecraft and Earthbased observations, submitted to Astron. J. (ssd.jpl.nasa.gov/sat_props.html).

  • Kargel, J.S., and S. Pozio, 1996, The volcanic and tectonic history of Enceladus, Icarus 119, 385–404.

    Article  Google Scholar 

  • Kossacki, K.J., and J. Leliwa-Kopystyński, 1993, Medium-size icy satellites: thermal and structural evolution during accretion, Planet. Space Sci. 41, 729–741.

    Article  Google Scholar 

  • Lissauer, J.J., S.J. Peale and J.N. Cuzzi, 1984, Ring torque on Janus and the melting of Enceladus, Icarus 58, 159–168.

    Article  Google Scholar 

  • McKinnon, W.B., 1998, Geodynamics of Icy Satellites. In: B. Schmitt, de C. Bergh and M. Festou (eds.), “Solar System Ices”, Kluwer Acad. Publ., Dordrecht, 525–550.

    Google Scholar 

  • Officer, C.B., 1974, Introduction to Theoretical Geophysics, Springer-Verlag, Berlin.

    Google Scholar 

  • Peale, S.J., 2003, Tidally induced volcanism, Celest. Mech. Dyn. Astr. 87, 129–155.

    Article  Google Scholar 

  • Peale, S.J., P. Cassen and R.T. Reynolds, 1979, Melting of I 0 by tidal dissipation, Science 203, 892–894.

    Google Scholar 

  • Peltier, W.R., and G.T. Jarvis, 1982, Whole mantle convection and the thermal evolution of the Earth, Phys. Earth Planet. Int. 29, 281–304.

    Article  Google Scholar 

  • Poirier, J.P., L. Bloch and P. Chambon, 1983, Tidal dissipation in small viscoelastic ice moons: the case of Enceladus, Icarus 55, 218–230.

    Article  Google Scholar 

  • Roscoe, R., 1952, The viscosity of suspensions of rigid spheres, British J. Appl. Phys. 3, 267–269.

    Article  Google Scholar 

  • Ross, M.N., and G. Schubert, 1989, Viscoelastic models of tidal heating in Enceladus, Icarus 78, 90–101.

    Article  Google Scholar 

  • Rothery, D.A., 1992, Satellites of the Outer Planets, Clarendon Press, Oxford.

    Google Scholar 

  • Schubert, G., D. Stevenson and P. Cassen, 1980, Whole planet cooling and radiogenic heat source contents of the Earth and Moon, J. Geophys. Res. 85, 2511–2518.

    Google Scholar 

  • Schubert, G., T. Spohn and R.T. Reynolds, 1986, Thermal histories, compositions and internal structures of the moons of the solar system. In: J.A. Burns and M.S. Matthews (eds.), “Satellites”, The University of Arizona Press, Tucson, 224–292.

    Google Scholar 

  • Schubert, G., D.L. Turcotte and P. Olson, 2001, Mantle convection in the Earth and Planets. Cambridge Univ. Press, Cambridge, UK.

    Google Scholar 

  • Sharpe, H.N., and W.R. Peltier, 1978, Parameterized mantle convection and the Earth’s thermal history, Geophys. Res. Lett. 5, 737–740.

    Google Scholar 

  • Spann, N.A., J.W. Head and R.T. Pappalardo, 2002, The spacing distances of chaos and lenticulae on Europa, Lunar and Planet. Sci. 33, 1723.pdf.

  • Squyres, S.W., R.T. Reynolds, P.M. Cassen and S.J. Peale, 1983, The evolution of Enceladus, Icarus 53, 319–331.

    Article  Google Scholar 

  • Turcotte, D.L., and G. Schubert, 1982, Geodynamics, J. Wiley and Sons, New York, pp. 450.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czechowski, L. Two models of parameterized convection for medium-sized icy satellites of Saturn. Acta Geophys. 54, 280–302 (2006). https://doi.org/10.2478/s11600-006-0021-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11600-006-0021-z

Key words

Navigation