Central European Journal of Medicine

, Volume 9, Issue 6, pp 748–753 | Cite as

Markers of inflammation and microvascular complications in type 1 diabetes

  • Milena Mitrović
  • Đorđe S. Popović
  • Dragana Tomić Naglić
  • Jovanka Novaković Paro
  • Tatjana Ilić
  • Branka Kovačev Zavišić
Research Article



Long-term hyperglycemia, characteristic for type 1 diabetes, causes enhanced oxidative stress, chronic inflammation and endothelial dysfunction which are the key events in the development of vascular complications. On the other hand, some data shows that existence of chronic degenerative complications may cause increased inflammatory marker levels in diabetic patients, mainly as a repercussion of malfunctioned endothelial repair process. Our study aims to determinate a degree of inflammation in type 1 diabetes patients and to investigate its relation to development of the chronic microvascular complications.


General information, anthropometric, glucose metabolism, lipid and lipoprotein parameters, levels of C reactive protein (CRP), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were analyzed and screening tests for detection of the chronic microvascular complications were conducted in 76 type 1 diabetes patients.


Forty six patients had at least one of the complications. They were older and had longer duration of diabetes (p=0.015; p<0.0001) and higher values of total (p=0.021), LDL-cholesterol (p=0.048) and triglycerides (p=0.002). Levels of CRP (p=0.004) and TNF-α (p=0.048) were higher in patients with chronic microvascular complications in regard to patients without diagnosed microangiopathy.


Low grade chronic inflammation is characteristic for type 1 diabetes patients with developed chronic microvascular complications.


Type 1 diabetes mellitus Diabetes complications Inflammation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Maiti R, Agrawal NK. Atherosclerosis in diabetes mellitus: role of inflammation. Indian J Med Sci 2007;61:292–306PubMedCrossRefGoogle Scholar
  2. [2]
    Kilpatrick ES, Keevil BG, Jagger C, Spooner RJ, Smalla M. Determinants of raised C reactive protein concentration in type 1 diabetes. Q J Med 2000;93:231–233CrossRefGoogle Scholar
  3. [3]
    Chase HP, Cooper S, Osberg I, Stene L, Barriga K, Norris J, et al. Elevated C reactive protein levels in the development of type 1 diabetes. Diabetes 2004;53:2569–2573PubMedCrossRefGoogle Scholar
  4. [4]
    Devaraj S, Glaser N, Griffen S, Wang-Polgruto J, Miguelino E, Jialal I. Increased monocytic activity and biomarkers of inflammation in patients with type 1 diabetes. Diabetes 2006;55:774–779PubMedCrossRefGoogle Scholar
  5. [5]
    Targher G, Zenari L, Bertoloini L, Muggeo G. Elevated levels of interleukin-6 in young adults with type 1 diabetes without clinical evidence of microvascular complications. Diabetes Care 2001;24:956–957PubMedCrossRefGoogle Scholar
  6. [6]
    Sibal L, Aldibbiat A, Agarwal SC, Mitchell G, Oates C, Razvi S, et al. Circulating endothelial progenitor cells, endothelial function, carotid intima-media thickness and circulating markers of endothelial dysfunction in people with type 1 diabetes without macrovascular disease or microalbuminuria. Diabetologia 2009;52:1464–1473PubMedCrossRefGoogle Scholar
  7. [7]
    Pepys MB, Hirshfield GM. C reactive protein: a critical update. J Clin Invest 2003;111 (12):1805–12CrossRefGoogle Scholar
  8. [8]
    Kishimoto T. IL-6: from its discovery to clinical applications. Int Immunol 2010;22 (5):347–352CrossRefGoogle Scholar
  9. [9]
    Jurisic V, Srdic-Rajic T, Konjevic G, Bogdanovic G, Colic M. TNF-α induced apoptosis is accompanied with rapid CD30 and slower CD45 shedding from K-562 cells. J Membr Biol 2011;239 (3):115–122CrossRefGoogle Scholar
  10. [10]
    Fraser GE, Luke R, Thompson S, Smith H, Carter S, Sharpe N. Comparison of echocardiographic variables between type I diabetics and normal control. Am J Cardiol 1995;75:141–145PubMedCrossRefGoogle Scholar
  11. [11]
    Venugopal SK, Devaraj S, Jialal I. Effect of C reactive protein on vascular cells: evidence for a proinflammatory, proatherogenic role. Curr Opin Nephrol Hypertens 2005;14:33–37PubMedCrossRefGoogle Scholar
  12. [12]
    Zorena K, Mysliwska J, Mysliwiec M, Balcerska A, Lipowski P, Raczynska K. Relationship between serum levels of tumor necrosis factor-alpha and interleukin-6 in diabetes mellitus type 1 children. Centr Eur Immunol 2007;32 (3):124–128Google Scholar
  13. [13]
    Schalkwijk CG, Poland DC, van Dijk W, Kok A, Emeis JJ, Drager AM, et al. Plasma concentration of C reactive protein is increased in type I diabetic patients without clinical macroangiopathy and correlates with markers of endothelial dysfunction: Evidence for chronic inflammation. Diabetologia 1999;42:351–357PubMedCrossRefGoogle Scholar
  14. [14]
    Schram MT, Chaturvedi N, Schalkwijk CG, Fuller JH, Stehouwer CDA. Markers of inflammation are cross-sectionally associated with microvascular complications and cardiovascular disease in type 1 diabetes-the EURODIAB Prospective Complications Study. Diabetologia 2005;48:370–378PubMedCrossRefGoogle Scholar
  15. [15]
    Chaturvedi N, Fuller JH, Taskinen MR. EURODIAB study group: Differing associations of lipid and lipoprotein disturbances with macrovascular and microvascular complications of type 1 diabetes. Diabetes Care 2001;24:2071–2077PubMedCrossRefGoogle Scholar
  16. [16]
    Chambers JC, Eda S, Bassett P, Karim Y, Thompson SG, Gallimore JR et al. C reactive protein, insulin resistance, central obesity and coronary heart disease risk in Indian Asians from United Kingdom compared with Europian whites. Circulation 2001;104:145–150PubMedCrossRefGoogle Scholar
  17. [17]
    Jurisic V, Terzic T, Colic S, M Jurisic. The concentration of TNF-α correlate with number of inflammatory cells and degree of vascularization in radicular cysts. Oral Dis 2008;14(7):600–605PubMedCrossRefGoogle Scholar
  18. [18]
    Lopes Virella MF, Carter RE, Gilbert GE, Klein RL, Jaffa M, Jenkins A. Risk factors related to inflammation and endothelial dysfunction in the DCCT/EDIC cohort and their relationship with nephropathy and macrovascular complications. Diabetes Care 2008;31:2006–2012PubMedCentralPubMedCrossRefGoogle Scholar
  19. [19]
    Ladeia AM, Stefanelli E, Ladeia-Frota C, Moreira A, Hiltner A, Adan L. Association between elevated serum C reactive protein and triglyceride levels in young subjects with type 1 diabetes. Diabetes Care 2005;29 (2):424–426Google Scholar
  20. [20]
    Frank RN. Diabetic retinopathy. N Engl J Med 2004;350:48–58PubMedCrossRefGoogle Scholar
  21. [21]
    Elner SG, Elner VM, Jaffe GJ, Stuart A, Kunkel SL, Strieter RM. Cytokines in proliferative diabetic retinopathy and proliferative vitreoretinopathy. Curr Eye Res 1995;14:1045–1053PubMedCrossRefGoogle Scholar
  22. [22]
    Limb GA, Hollifield RD, Webster L, Charteris DG, Chignell AH. Soluble TNF receptors in vitreoretinal proliferative disease. Invest Ophtalmol Vis Sci 2001;42:1586–1591Google Scholar
  23. [23]
    Skundric DS, Robert P. Role of neuropoetic cytokines in development and progression of diabetic polyneuropathy: From glucose metabolism to neurodegeneration. Experimental Diab Res 2003;4:303–312CrossRefGoogle Scholar
  24. [24]
    Herder C, Lankish M, Ziegler D, Rathmann W, Koenig W, Illig T, et al. Subclinical inflammation and diabetic polyneuropathy. Diabetes Care 2009;32 (4):680–682CrossRefGoogle Scholar
  25. [25]
    Haaber AB, Deckert M, Stender S, Jensen T. Increases urinary loss of high density lipoproteins in albuminuric insulin dependent diabetic patients. Scand J Clin Lab Invest 1993;53:191–196PubMedCrossRefGoogle Scholar
  26. [26]
    Vaziri ND, Liang K. Up-regulation of acyl-coenzyme A: cholesterol acyltransferase (ACTA) in nephritic syndrome. Kidney Int 2002;62 (5):1769–1775CrossRefGoogle Scholar
  27. [27]
    Gedela S, Guruju VPB, Sulakshana M, Meheswari IL, Prabhakar T, Sankar G, et al. Quantitative analysis of cytokines in diabetic nephropathy. Journal Proteomics Bioinform 2009;2:217–221CrossRefGoogle Scholar
  28. [28]
    Joles JA, Kunter U, Janssen U, Kriz W, Rabelink TJ, Koomans HA, et al. Early mechanisms of renal injury in hyperholesterolemic or hypertriglyceridemic rats. J Am Soc Nephrol 2000;11:669–683PubMedGoogle Scholar
  29. [29]
    Rivellese AA, Vaccuaro O, Patti L. The patophysiology of lipid metabolism and diabetes. Int J of Clin Pract 2004;58:32–35CrossRefGoogle Scholar
  30. [30]
    Schram M, Chaturvedi N, Schalkwijk C, Giorgino F, Ebeling P, Fuller JH, et al. The EURODIAB Prospective Complications Study Group: Vascular risk factors and markers of endothelial function as determinants of inflammatory markers in type 1 diabetes. Diabetes Care 2003;26 (7):2165–2173CrossRefGoogle Scholar
  31. [31]
    Guy J, Ogden L, Wadwa RP, Hamman RF, Mayer-Davis EJ, Liese AD, et al. Lipid and lipoprotein pro-files in youth with and without type 1 diabetes. The search for diabetes in youth case-control study. Diabetes Care 2009;32(3):416–420PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Milena Mitrović
    • 1
  • Đorđe S. Popović
    • 1
  • Dragana Tomić Naglić
    • 1
  • Jovanka Novaković Paro
    • 1
  • Tatjana Ilić
    • 2
  • Branka Kovačev Zavišić
    • 1
  1. 1.Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Center of Vojvodina, Medical FacultyUniversity of Novi SadNovi SadSerbia
  2. 2.Clinic for Nephrology and Clinical Immunology, Clinical Center of Vojvodina, Medical FacultyUniversity of Novi SadNovi SadSerbia

Personalised recommendations