Central European Journal of Medicine

, Volume 9, Issue 5, pp 632–641 | Cite as

Artificial neural networks approach to early lung cancer detection

  • Krzysztof GoryńskiEmail author
  • Izabela Safian
  • Włodzimierz Grądzki
  • Michał Piotr Marszałł
  • Jerzy Krysiński
  • Sławomir Goryński
  • Anna Bitner
  • Jerzy Romaszko
  • Adam Buciński
Research Article


Lung cancer is rated with the highest incidence and mortality every year compared with other forms of cancer, therefore early detection and diagnosis is essential. Artificial Neural Networks (ANNs) are “artificial intelligence” software which have been used to assess a few prognostic situations. In this study, a database containing 193 patients from Diagnostic and Monitoring of Tuberculosis and Illness of Lungs Ward in Kuyavia and Pomerania Centre of the Pulmonology (Bydgoszcz, Poland) was analysed using ANNs. Each patient was described using 48 factors (i.e. age, sex, data of patient history, results from medical examinations etc.) and, as an output value, the expected presence of lung cancer was established. All 48 features were retrospectively collected and the database was divided into a training set (n=97), testing set (n=48) and a validating set (n=48). The best prediction score of the ANN model (MLP 48-9-2) was above 0.99 of the area under a receiver operator characteristic (ROC) curve. The ANNs were able to correctly classify 47 out of 48 test cases. These data suggest that Artificial Neural Networks can be used in prognosis of lung cancer and could help the physician in diagnosis of patients with the suspicion of lung cancer.


Artificial Neural Networks Cancer diagnosis Lung cancer Risk factors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Jemal A., Siegel R., Xu J., Ward E., Cancer Statistics 2010, Ca. Cancer. J. Clin., 2010, 60, 277–300PubMedCrossRefGoogle Scholar
  2. [2]
    Siegel R., Naishadham D., Jemal A., Cancer statistics, 2012, CA Cancer J Clin., 2012 62, 10–29PubMedCrossRefGoogle Scholar
  3. [3]
    Szczuka I., Roszkowski-Ślisz K., Lung cancer in Poland in 1970–2004, Pneumonol. Alergol. Pol., 2008, 76, 19–28PubMedGoogle Scholar
  4. [4]
    Ahmed K., Emran A.A., Jesmin T., Early detection of lung cancer risk using data mining, Asian Pac. J.Cancer Prev., 2013, 14, 595–598PubMedCrossRefGoogle Scholar
  5. [5]
    Flores J.M., Herrera E., Leal G, Artificial Neural Network-Based Serum Biomarkers Analysis Improves Sensitivity in the Diagnosis of Lung Cancer, IFMBE Proceedings 2013, 33, 882–885CrossRefGoogle Scholar
  6. [6]
    Bishop C.M., Neural networks for pattern recognition, New York, NY: Oxford University Press 1995.Google Scholar
  7. [7]
    Dayhoff J.E., DeLeo J.M., Artificial neural networks: opening the black box, Cancer, 2001, 91, 1615–1635PubMedCrossRefGoogle Scholar
  8. [8]
    Cross S.S., Harrison F.H., Kennedy R.L., Introduction to neural networks. Lancet, 1995, 346, 1075–1079PubMedCrossRefGoogle Scholar
  9. [9]
    Baxt W.G., Application of artificial neural networks to clinical medicine, Lancet, 1995, 346, 1135–1138PubMedCrossRefGoogle Scholar
  10. [10]
    Amato F., López A., Peña-Méndez E. M., Artificial neural networks in medical diagnosis, J. Appl. Biomed., 2013, 11, 47–58CrossRefGoogle Scholar
  11. [11]
    Alkim E., Gürbüz E., Kiliç E., A fast and adaptiveautomated disease diagnosis method with an innovative neural network model, Neur. Networks, 2012, 33, 88–96CrossRefGoogle Scholar
  12. [12]
    Atkov O., Gorokhova S., Sboev A., Coronary heart disease diagnosis by artificial neural networks including genetic polymorphisms and clinical parameters, J. Cardiol., 2012, 59, 190–194PubMedCrossRefGoogle Scholar
  13. [13]
    Buciński A., Bączek T., Kaliszan R., Nasal A., Krysiński J., Załuski J., Artificial Neural Network Analysis of Patient and Treatment Variables as a Prognostic Tool in Breast Cancer after Mastectomy, Adv. Clin. Exp. Med., 2005, 14, 973–979Google Scholar
  14. [14]
    Patel J.L., Goyal R.K., Application of artificial neural networks in medicinal science, Curr. Clin. Pharmacol., 2007, 2, 217–226PubMedCrossRefGoogle Scholar
  15. [15]
    Atkov O., Gorokhova S., Sboev A., Coronary heart disease diagnosis by artificial neural networks including genetic polymorphisms and clinical parameters, J. Cardiol., 2012, 59, 190–194PubMedCrossRefGoogle Scholar
  16. [16]
    Uğuz H., A biomedical system based on artificial neural network and principal component analysis for diagnosis of the heart valve diseases., J. Med. Syst., 2012, 36, 61–72PubMedCrossRefGoogle Scholar
  17. [17]
    Esteva H., Bellotti M., Marchevsky A.M., Neural networks for the estimation of prognosis in lung cancer, In: Naguib R.N., Sherbet G.V. eds. Artificial neural networks in cancer diagnosis, prognosis and patient management. Boca Raton: CRC Press, 2001: 29–37CrossRefGoogle Scholar
  18. [18]
    Bucinski A., Marszall M.P., Krysinski J., Lemieszek A., Zaluski A., Contribution of artificial intelligence to the knowledge of prognostic factors in Hodgkin’s lymphoma, Eur. J. Cancer Prev., 2010, 19, 308–312PubMedCrossRefGoogle Scholar
  19. [19]
    Cinar M., Engin M., Egin E. Z., Atesci Y. Z., Early prostate cancer diagnosis by using artificial neural networks and support vector machines, Expert Systems with Applications, 2009, 36, 6357–6361CrossRefGoogle Scholar
  20. [20]
    Marszałł M.P., Krysiński J., Sroka W. D., Nyczak Z., Stefanowicz M., Waśniewski T., Romaszko J., Buciński A. ANN as a prognostic tool after treatment of non-seminoma testicular cancer, Central Eur. J. Med. 2012, 7, 672–679CrossRefGoogle Scholar
  21. [21]
    Bączek T., Buciński A., Ivanov A.R., Kaliszan R., Artificial neural network analysis for evaluation of peptide MS/MS spectra in proteomics, Anal. Chem., 2004, 76, 1726–1732PubMedCrossRefGoogle Scholar
  22. [22]
    Koba M., Application of artificial neural networks for the prediction of antitumor activity of a series of acridinone derivatives, Med. Chem., 2012, 8, 309–319PubMedCrossRefGoogle Scholar
  23. [23]
    Luenberger D.G., Ye Y., Linear and nonlinear programming, International Series in Operations Research & Management Science 116 (Third ed.), New York, Springer, 2008, pp. xiv+546Google Scholar
  24. [24]
    Knyazev, A.V., Lashuk I., Steepest Descent and Conjugate Gradient Methods with Variable Preconditioning, SIAM J. Matrix Anal. A, 2008, 29, 1267–1280CrossRefGoogle Scholar
  25. [25]
    Chen T.M., Kuschner W.G., Non-tobacco related lung carcinogens. Lung cancer principle and practice, In: Harvey P. et al, editors. 3rd ed, Lippincot Williams and Wilkins: 2005. p. 61–73Google Scholar
  26. [26]
    Bij S., Hendrik Koffijberg H., Lenters V., Lung cancer risk at low cumulative asbestos exposure: meta-regression of the exposure-response relationship, Cancer Cause. Control, 2013, 24, 1–12CrossRefGoogle Scholar
  27. [27]
    Alberg A.J., Samet J.M., Epidemiology of lung cancer, Chest, 2003, 123, 21S–49SPubMedCrossRefGoogle Scholar
  28. [28]
    Shopland D., Tobacco use and its contribution to early cancer mortality with a special emphasis on cigarette smoking, Environ. Health. Prospect., 1995, 103, 131–142CrossRefGoogle Scholar
  29. [29]
    Doll R., Peto R., Boreham J., Sutherland I., Mortality from cancer in relation to smoking: 50 years observations on British doctors, Br. J. Cancer, 2005, 92, 426–429PubMedCentralPubMedCrossRefGoogle Scholar
  30. [30]
    De Matteis S., Consonni D., Pesatori A.C., Are women who smoke at higher risk for lung cancer than men who smoke? Am. J. Epidemiol., 2013, 177, 601–612PubMedCentralPubMedCrossRefGoogle Scholar
  31. [31]
    Sutedja G., New techniques for early detection of lung cancer, Eur. Respir. J., 2003, 21, 57–66CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Krzysztof Goryński
    • 1
    Email author
  • Izabela Safian
    • 2
  • Włodzimierz Grądzki
    • 3
  • Michał Piotr Marszałł
    • 1
  • Jerzy Krysiński
    • 4
  • Sławomir Goryński
    • 5
  • Anna Bitner
    • 6
  • Jerzy Romaszko
    • 7
  • Adam Buciński
    • 2
  1. 1.Department of Medicinal Chemistry, Collegium Medicum in BydgoszczNicolaus Copernicus University in ToruńBydgoszczPoland
  2. 2.Department of Biopharmacy, Collegium Medicum in BydgoszczNicolaus Copernicus University in ToruńBydgoszczPoland
  3. 3.Ward of Diagnostic-monitoring of Tuberculosis and Illness of LungsVoivodship Centre of the pulmonologyBydgoszczPoland
  4. 4.Department of Pharmaceutical Technology, Collegium Medicum in BydgoszczNicolaus Copernicus University in ToruńBydgoszczPoland
  5. 5.Department of Paliative MedicineRegional Specialist Hospital in GrudziadzGrudziadzPoland
  6. 6.Chair and Department of Hygiene and Epidemiology, Collegium Medicum in BydgoszczNicolaus Copernicus University in ToruńBydgoszczPoland
  7. 7.NZOZ Pantamed Sp z o.o. in OlsztynOlsztynPoland

Personalised recommendations