Skip to main content
Log in

Animal and human dentin microstructure and elemental composition

  • Research Article
  • Published:
Central European Journal of Medicine

Abstract

Animal teeth are a common model in studies on dentin adhesive materials. The aim of this study was to compare microstructural parameters (density and diameter of dentinal tubules (DT), peritubular dentin (PTD) thickness, PTD and intertubular dentin (ITD) surface area) and chemical characteristics of canine, porcine, equine, and human root dentin. The middle layers of dentin were harvested just below a cemento-enamel junction from incisors and investigated by means of scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDXS). SEM evaluation of the specimens revealed, that porcine dentin shared most similarities with human dentin. When comparing the density of DTs, canine dentin was also found to be similar to human dentin. Elemental composition of the root dentin did not differ significantly in porcine, equine and human dentin, but in canine dentin higher magnesium value in PTD compared to ITD was found. It is known that microstructural and chemical characteristics affect the strength of the adhesive bonds created among restorative materials and dentin. According to the results of this study, porcine dentin seems to be the most appropriate model to study dental materials to be used in human restorative dentistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rasmussen S.T., Patchin R.E., Fracture properties of human enamel and dentin in an aqueous environment, J. Dent. Res., 1984, 63(12), 1362–1368

    Article  CAS  PubMed  Google Scholar 

  2. Nanci A., Ten Cate’s Oral Histology: Development, Structure and Function, 6th ed., St. Louis, Mosby, 2003

    Google Scholar 

  3. Muylle S., Simoens P., Lauwers H., A study of the ultrastructure and staining characteristics of the «dental star» of equine incisors, Equine Vet. J., 2002, 34(3), 230–234

    Article  CAS  PubMed  Google Scholar 

  4. Garberoglio R., Brännström M., Scanning electron microscopic investigation of human dentinal tubules, Arch. Oral Biol., 1976, 21(6), 355–362

    Article  CAS  PubMed  Google Scholar 

  5. Forssell-Ahlberg K., Brännström M., Edwall L., The diameter and number of dentinal tubules in rat, cat, dog and monkey. A comparative scanning electron microscopic study, Acta Odontol. Scand., 1975, 33(5), 243–250

    Article  CAS  PubMed  Google Scholar 

  6. Robb L., Marx J., Steenkamp G., van Heerden W.F., Pretorius E., Boy S.C., Scanning electron microscopic study of the dentinal tubules in dog canine teeth, J. Vet. Dent., 2007, 24(2), 86–89

    PubMed  Google Scholar 

  7. Dutra-Correa M., Anauate-Netto C., Arana-Chavez V.E., Density and diameter of dentinal tubules in etched and non-etched bovine dentin examined by scanning electron microscopy, Arch. Oral Biol., 2007, 52, 850–855

    Article  PubMed  Google Scholar 

  8. Lopes M.B., Sinhoreti M.A., Gonini Júnior A., Consani S., McCabe J.F., Comparative study of tubular diameter and quantity for human and bovine dentin at different depths, Braz. Dent. J., 2009, 20(4), 279–283

    Article  PubMed  Google Scholar 

  9. Kinney J.H., Pople J.A., Marshall G.W., Marshall S.J., Collagen orientation and crystallite size in human dentin: a small angle X-ray scattering study, Calcif. Tissue Int., 2001, 69(1), 31–37

    Article  CAS  PubMed  Google Scholar 

  10. Kilic S., Dixon P., Kempson S., A light microscopic and ultrastructural examintaion of calcified dental tissues of horses: 3. Dentin, Equine Vet. J., 1997, 29, 206–212

    Article  CAS  PubMed  Google Scholar 

  11. Dai X.F., Tencate A.R., Limeback H., The extent and distribution of intratubular collagen fibrils in human dentin, Arch. Oral Biol., 1991, 36(10), 775–778

    Article  CAS  PubMed  Google Scholar 

  12. Magne D., Guicheux J., Weiss P., Pilet P., Daculsi G., Fourier transform infrared microspectroscopic investigation of the organic and mineral constituents of peritubular dentin: a horse study, Calcif. Tissue Int., 2002, 71(2), 179–185

    Article  CAS  PubMed  Google Scholar 

  13. Qin Q.H., Swain M.V., A micro-mechanics mode of dentin mechanical properties, Biomaterials, 2004, 25(20), 5081–5090

    Article  CAS  PubMed  Google Scholar 

  14. Xu C., Wang Y., Chemical composition and structure of peritubular and intertubular human dentin revisited, Arch. Oral Biol., 2012, 57(4), 383–391

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Gotliv B.A., Robach J.S., Veis A., The composition and structure of bovine peritubular dentin: mapping by time of flight secondary ion mass spectroscopy, J. Struct. Biol., 2006, 156(2), 320–333

    Article  CAS  PubMed  Google Scholar 

  16. Gotliv B.A., Veis A., Peritubular dentin, a vertebrate apatitic mineralized tissue without collagen: role of a phospholipid-proteolipid complex, Calcif. Tissue Int., 2007, 81(3), 191–205

    Article  Google Scholar 

  17. Habelitz S., Rodriguez B.J., Marshall S.J., Marshall G.W., Kalinin S.V., Gruverman A., Peritubular dentin lacks piezoelectricity, J. Dent. Res., 2007, 86(9), 908–911

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Gotliv B.A., Veis A., The composition of bovine peritubular dentin: matching TOF-SIMS, scanning electron microscopy and biochemical component distributions. New light on peritubular dentin function, Cells Tissues Organs, 2009, 189(1–4), 12–19

    Article  CAS  PubMed  Google Scholar 

  19. Sögaard-Pedersen B., Boye H., Matthiessen M.E., Scanning electron microscope observations on collagen fibers in human dentin and pulp, Scand. J. Dent., 1990, 98(2), 89–95

    Google Scholar 

  20. Linde A., Goldberg M., Dentinogenesis, Crit. Rev. Oral Biol. Med., 1993, 4(5), 679–728

    CAS  PubMed  Google Scholar 

  21. Muylle S., Simoens P., Lauwers H., Tubular contents of equine dentin: A scanning electron microscopic study, J. Vet. Med., 2000, 47, 321–330

    Article  CAS  Google Scholar 

  22. Wiesmann H.P., Meyer U., Plate U., Höhling H.J., Aspects of collagen mineralization in hard tissue formation, Int. Rev. Cytol., 2005, 242, 121–156

    Article  CAS  PubMed  Google Scholar 

  23. Hong H., Tie L., Jian T., The crystal characteristics of enamel and dentin by XRD method, J. Wuhan. Univ. Technol. Mater. Sci. Ed., 2006, 21(1), 9–12

    Article  CAS  Google Scholar 

  24. Arnold W.H., Konopka S., Gaengler P., Qualitative and quantitative assessment of intertubular dentin formation in human natural carious lesions, Calcif. Tissue Int., 2001, 69, 268–273

    Article  CAS  PubMed  Google Scholar 

  25. Kodaka T., Debari K., Yamada M., Physicochemical and morphological studies of horse dentin, J. Electron. Microsc., 1991, 40(6), 385–391

    CAS  Google Scholar 

  26. Sakoolnamarka R., Burrow M.F., Swain M., Tyas M.J., Microhardness and Ca:P ratio of carious and Carisolv treated caries-affected dentin using an ultra-micro-indentation system and energy dispersive analysis of x-rays-a pilot study, Aust. Dent. J., 2005, 50(4), 246–250

    Article  CAS  PubMed  Google Scholar 

  27. Lakomaa E.L., Rytömaa I., Mineral composition of enamel and dentin of primary and permanent teeth in Finland, Scand. J. Dent. Res., 1977, 85(2), 89–95

    CAS  PubMed  Google Scholar 

  28. Coradazzi J.L., Silva C.M., Pereira J.C., Francischone C.E., Shear bond strength of an adhesive system in human, bovine and swinish teeth, Rev. Fac. Odontol. Bauru., 1998, 6(4), 29–33

    Google Scholar 

  29. Krifka S., Börzsönyi A., Koch A., Hiller K.A., Schmalz G., Friedl K.H., Bond strength of adhesive systems to dentin and enamel-human vs. bovine primary teeth in vitro, Dent. Mater., 2008, 24(7), 888–894

    Article  CAS  PubMed  Google Scholar 

  30. Marshall G.W. Jr., Marshall S.J., Kinney J.H., Balooch M., The dentin substrate: structure and properties related to bonding, J. Dent., 1997, 25(6), 441–458

    Article  CAS  PubMed  Google Scholar 

  31. Inoue T., Saito M., Yamamoto M., Debari K., Kou K., Nishimura F., et al., Comparison of nanohardness between coronal and radicular intertubular dentin, Dent. Mater. J., 2009, 28(3), 295–300

    Article  PubMed  Google Scholar 

  32. Chu C.Y., Kuo T.C., Chang S.F., Shyu Y.C., Lin C.P., Comparison of the microstructure of crown and root dentin by a scanning electron microscopic study, J. Dent. Sci., 2010, 5(1), 14–20

    Article  Google Scholar 

  33. Schilke R., Lisson J.A., Bauss O., Geurtsen W., Comparison of the number and diameter of dentinal tubules in human and bovine dentin by scanning electron microscopic investigation, Arch. Oral Biol., 2000, 45(5), 355–361

    Article  CAS  PubMed  Google Scholar 

  34. Schellenberg U., Krey G., Bosshardt D., Nair P.N., Numerical density of dentinal tubules at the pulpal wall of human permanent premolars and third molars, J. Endod., 1992, 18(3), 104–109

    Article  CAS  PubMed  Google Scholar 

  35. Ferrari M., Mannocci F., Vichi A., Cagidiaco M.C., Mjör I.A., Bonding to root canal: structural characteristics of the substrate, Am. J. Dent., 2000, 13(5), 255–260

    CAS  PubMed  Google Scholar 

  36. Calt S., Serper A., Time-dependent effects of EDTA on dentin structures, J. Endod., 2002, 28(1), 17–19

    Article  PubMed  Google Scholar 

  37. Van Meerbeeck B., Inokoshi S., Braem M., Lambrechts P., Vanherle G., Morphological aspects of the resin-dentin interdiffusion zone with different dentin adhesive systems, J. Dent. Res., 1992, 71, 1530–1540

    Article  Google Scholar 

  38. Muylle S., Simoens P., Lauwers H., The distribution of intratubular dentin in equine incisors: a scanning electron microscopic study, Equine Vet. J., 2001, 33(1), 65–69

    Article  CAS  PubMed  Google Scholar 

  39. Pashley D.H.. Dynamics of the pulpo-dentin complex, Crit. Rev. Oral Biol. Med., 1996, 7(2), 104–133

    Article  CAS  PubMed  Google Scholar 

  40. Lloyd G.E., Atomic number and crystallographic contrast images with the SEM: a review of backscattered electron techniques, Mineral. Mag., 1987, 51, 3–19

    Article  CAS  Google Scholar 

  41. Murray M.M., The chemical composition of teeth: The calcium, magnesium and phosphorus contents of the teeth of different animals. A brief consideration of the mechanisn of calcification, Biochem. J., 1936, 30(9), 1567–1571

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Ballal N.V., Mala K., Bhat K.S., Evaluation of decalcifying effect of maleic acid and EDTA on root canal dentin using energy dispersive spectrometer, Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2011, 112(2), 78–84

    Article  Google Scholar 

  43. Yoshiyama M., Noiri Y., Ozaki K., Uchida A., Ishikawa Y., Ishida H., Transmission electron microscopic characterization of hypersensitive human radicular dentin, J. Dent. Res., 1990, 69, 1293–1297

    Article  CAS  PubMed  Google Scholar 

  44. Lopes F.M., Markarian R.A., Sendyk C.L., Duarte C.P., Arana-Chavez V.E., Swine teeth as potential substitutes for in vitro studies in tooth adhesion: a SEM observation, Arch. Oral Biol., 2006, 51(7), 548–551

    Article  PubMed  Google Scholar 

  45. Mannocci F., Pilecki P., Bertelli E., Watson T.F., Density of dentinal tubules affects the tensile strength of root dentin, Dent. Mater., 2004, 20(3), 293–296

    Article  PubMed  Google Scholar 

  46. Ari H., Erdemir A., Effects of endodontic irrigation solutions on mineral content of root canal dentin using ICP-AES technique, J. Endod., 2005, 31(3), 187–189

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Mlakar.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mlakar, N., Pavlica, Z., Petelin, M. et al. Animal and human dentin microstructure and elemental composition. cent.eur.j.med 9, 468–476 (2014). https://doi.org/10.2478/s11536-013-0295-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11536-013-0295-x

Keywords

Navigation