Central European Journal of Medicine

, Volume 9, Issue 2, pp 306–312 | Cite as

FDG-PET-CT in the early response evaluation for primary systemic therapy of breast cancer

  • Tímea Tőkés
  • László Torgyík
  • Janina Kulka
  • Katalin Borka
  • Attila Marcell Szász
  • Andrea Tóth
  • László Harsányi
  • Zsolt Lengyel
  • Tamás Györke
  • Magdolna Dank
Case Report


Primary systemic therapy (PST) is a standard treatment for patients with locally advanced breast cancer. We report one of our patients to demonstrate the optimal use of FDG-PET-CT in the routine clinical workup during PST, especially when clinicians face contradictory clinical and pathological findings, and to show the advantages of this imaging modality in the decision-making process about the initial treatment choice. By reviewing the literature we would also like to confirm that FDG-PET-CT is highly sensitive in the measurement of the early therapeutic response and the prediction of the complete pathological remission, as early as after the first cycle of chemotherapy is administered.


Breast cancer Primary systemic therapy FDG-PET-CT Interim Ki-67 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Kaufmann M, von Minckwitz G, Smith R, Valero V, Gianni L, Eiermann W et al. International expert panel on the use of primary (preoperative) systemic treatment of operable breast cancer: review and recommendations. J Clin Oncol, 2003, 21, 2600–2608PubMedCrossRefGoogle Scholar
  2. [2]
    Kaufmann M, Hortobagyi GN, Goldhirsch A, Scholl S, Makris A, Valagussa P et al. Recommendations from an international expert panel on the use of neoadjuvant (primary) systemic treatment of operable breast cancer: an update. J Clin Oncol, 2006, 24, 1940–1949PubMedCrossRefGoogle Scholar
  3. [3]
    Bonadonna G, Veronesi U, Brambilla C, Ferrari L, Luini A, Greco M et al. Primary chemotherapy to avoid mastectomy in tumors with diameters of three centimeters or more. J Natl Cancer Inst, 1990, 82, 1539–1545PubMedCrossRefGoogle Scholar
  4. [4]
    Kulka J, Tokes AM, Toth AI, Szasz AM, Farkas A, Borka K et al. [Immunohistochemical phenotype of breast carcinomas predicts the effectiveness of primary systemic therapy]. Magy Onkol, 2009, 53, 335–343PubMedCrossRefGoogle Scholar
  5. [5]
    Fisher B, Bryant J, Wolmark N, Mamounas E, Brown A, Fisher ER et al. Effect of preoperative chemotherapy on the outcome of women with operable breast cancer. J Clin Oncol, 1998, 16, 2672–2685PubMedGoogle Scholar
  6. [6]
    Fisher B, Brown A, Mamounas E, Wieand S, Robidoux A, Margolese RG et al. Effect of preoperative chemotherapy on local-regional disease in women with operable breast cancer: findings from National Surgical Adjuvant Breast and Bowel Project B-18. J Clin Oncol, 1997, 15, 2483–2493PubMedGoogle Scholar
  7. [7]
    Wolff AC, Davidson NE. Preoperative therapy in breast cancer: lessons from the treatment of locally advanced disease. Oncologist, 2002, 7, 239–245PubMedCrossRefGoogle Scholar
  8. [8]
    Sachelarie I, Grossbard ML, Chadha M, Feldman S, Ghesani M, Blum RH. Primary systemic therapy of breast cancer. Oncologist, 2006, 11, 574–589PubMedCrossRefGoogle Scholar
  9. [9]
    Tardivon AA, Ollivier L, El Khoury C, Thibault F. Monitoring therapeutic efficacy in breast carcinomas. Eur Radiol, 2006, 16, 2549–2558PubMedCrossRefGoogle Scholar
  10. [10]
    Schelling M, Avril N, Nahrig J, Kuhn W, Romer W, Sattler D et al. Positron emission tomography using [(18)F]Fluorodeoxyglucose for monitoring primary chemotherapy in breast cancer. J Clin Oncol, 2000, 18, 1689–1695PubMedGoogle Scholar
  11. [11]
    Smith IC, Welch AE, Hutcheon AW, Miller ID, Payne S, Chilcott F et al. Positron emission tomography using [(18)F]-fluorodeoxy-D-glucose to predict the pathologic response of breast cancer to primary chemotherapy. J Clin Oncol, 2000, 18, 1676–1688PubMedGoogle Scholar
  12. [12]
    Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer, 2009, 45, 228–247PubMedCrossRefGoogle Scholar
  13. [13]
    Forrai G, Szabo E, Ormandi K, Ambrozay E, Pentek Z, Milics M et al. [Imaging methods in the current diagnosis of and screening for breast cancer]. Magy Onkol, 2010, 54, 211–216PubMedCrossRefGoogle Scholar
  14. [14]
    Wahl RL, Zasadny K, Helvie M, Hutchins GD, Weber B, Cody R. Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation. J Clin Oncol, 1993, 11, 2101–2111PubMedGoogle Scholar
  15. [15]
    Lee JH, Rosen EL, Mankoff DA. The role of radiotracer imaging in the diagnosis and management of patients with breast cancer: part 2-response to therapy, other indications, and future directions. J Nucl Med, 2009, 50, 738–748PubMedCrossRefGoogle Scholar
  16. [16]
    Wang Y, Zhang C, Liu J, Huang G. Is 18F-FDG PET accurate to predict neoadjuvant therapy response in breast cancer? A meta-analysis. Breast Cancer Res Treat, 2012, 131, 357–369PubMedCrossRefGoogle Scholar
  17. [17]
    Rousseau C, Devillers A, Sagan C, Ferrer L, Bridji B, Campion L et al. Monitoring of early response to neoadjuvant chemotherapy in stage II and III breast cancer by [18F]fluorodeoxyglucose positron emission tomography. J Clin Oncol, 2006, 24, 5366–5372PubMedCrossRefGoogle Scholar
  18. [18]
    Berriolo-Riedinger A, Touzery C, Riedinger JM, Toubeau M, Coudert B, Arnould L et al. [18F]FDGPET predicts complete pathological response of breast cancer to neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging, 2007, 34, 1915–1924PubMedCrossRefGoogle Scholar
  19. [19]
    Ueda S, Tsuda H, Saeki T, Omata J, Osaki A, Shigekawa T et al. Early metabolic response to neoadjuvant letrozole, measured by FDG PET/CT, is correlated with a decrease in the Ki67 labeling index in patients with hormone receptor-positive primary breast cancer: a pilot study. Breast Cancer, 2011, 18, 299–308PubMedCrossRefGoogle Scholar
  20. [20]
    Schwarz-Dose J, Untch M, Tiling R, Sassen S, Mahner S, Kahlert S et al. Monitoring primary systemic therapy of large and locally advanced breast cancer by using sequential positron emission tomography imaging with [18F]fluorodeoxyglucose. J Clin Oncol, 2009, 27, 535–541PubMedCrossRefGoogle Scholar
  21. [21]
    Keam B, Im SA, Koh Y, Han SW, Oh DY, Cho N et al. Early metabolic response using FDG PET/CT and molecular phenotypes of breast cancer treated with neoadjuvant chemotherapy. BMC cancer, 2011, 11, 452PubMedCentralPubMedCrossRefGoogle Scholar
  22. [22]
    Kolesnikov-Gauthier H, Vanlemmens L, Baranzelli MC, Vennin P, Servent V, Fournier C et al. Predictive value of neoadjuvant chemotherapy failure in breast cancer using FDG-PET after the first course. Breast Cancer Res Treat, 2012, 131, 517–525PubMedCrossRefGoogle Scholar
  23. [23]
    Groheux D, Giacchetti S, Espie M, Rubello D, Moretti JL, Hindie E. Early monitoring of response to neoadjuvant chemotherapy in breast cancer with 18F-FDG PET/CT: defining a clinical aim. Eur J Nucl Med Mol Imaging, 2011, 38, 419–425PubMedCrossRefGoogle Scholar
  24. [24]
    Buck A, Schirrmeister H, Kuhn T, Shen C, Kalker T, Kotzerke J et al. FDG uptake in breast cancer: correlation with biological and clinical prognostic parameters. Eur J Nucl Med Mol Imaging, 2002, 29, 1317–1323PubMedCrossRefGoogle Scholar
  25. [25]
    Buck AK, Schirrmeister H, Mattfeldt T, Reske SN. Biological characterisation of breast cancer by means of PET. Eur J Nucl Med Mol Imaging 2004, 31Suppl 1, S80–87PubMedCrossRefGoogle Scholar
  26. [26]
    Buban T, Toth L, Tanyi M, Kappelmayer J, Antal-Szalmas P. [Ki-67 — new faces of an old player]. Orv Hetil, 2009, 150, 1059–1070PubMedCrossRefGoogle Scholar
  27. [27]
    de Azambuja E, Cardoso F, de Castro G, Jr., Colozza M, Mano MS, Durbecq V et al. Ki-67 as prognostic marker in early breast cancer: a metaanalysis of published studies involving 12,155 patients. Br J Cancer, 2007, 96, 1504–1513PubMedCentralPubMedCrossRefGoogle Scholar
  28. [28]
    Colozza M, Azambuja E, Cardoso F, Sotiriou C, Larsimont D, Piccart MJ. Proliferative markers as prognostic and predictive tools in early breast cancer: where are we now? Ann Oncol, 2005, 16, 1723–1739PubMedCrossRefGoogle Scholar
  29. [29]
    Avril N, Menzel M, Dose J, Schelling M, Weber W, Janicke F et al. Glucose metabolism of breast cancer assessed by 18F-FDG PET: histologic and immunohistochemical tissue analysis. J Nucl Med, 2001, 42, 9–16PubMedGoogle Scholar
  30. [30]
    Bos R, van Der Hoeven JJ, van Der Wall E, van Der Groep P, van Diest PJ, Comans EF et al. Biologic correlates of (18)fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. J Clin Oncol, 2002, 20, 379–387PubMedCrossRefGoogle Scholar
  31. [31]
    Shimoda W, Hayashi M, Murakami K, Oyama T, Sunagawa M. The relationship between FDG uptake in PET scans and biological behavior in breast cancer. Breast Cancer, 2007, 14, 260–268PubMedCrossRefGoogle Scholar
  32. [32]
    Gil-Rendo A, Martinez-Regueira F, Zornoza G, Garcia-Velloso MJ, Beorlegui C, Rodriguez-Spiteri N. Association between [18F]fluorodeoxyglucose uptake and prognostic parameters in breast cancer. Br J Surg, 2009, 96, 166–170PubMedCrossRefGoogle Scholar
  33. [33]
    Koolen BB, Vrancken Peeters MJ, Wesseling J, Lips EH, Vogel WV, Aukema TS et al. Association of primary tumour FDG uptake with clinical, histopathological and molecular characteristics in breast cancer patients scheduled for neoadjuvant chemotherapy. Eur J Nucl Med Mol Imaging, 2012, 39, 1830–1838PubMedCrossRefGoogle Scholar
  34. [34]
    Tchou J, Sonnad SS, Bergey MR, Basu S, Tomaszewski J, Alavi A et al. Degree of tumor FDG uptake correlates with proliferation index in triple negative breast cancer. Mol Imaging Biol, 2010, 12, 657–662PubMedCrossRefGoogle Scholar
  35. [35]
    Varga Z, Diebold J, Dommann-Scherrer C, Frick H, Kaup D, Noske A et al. How reliable is Ki-67 immunohistochemistry in grade 2 breast carcinomas? A QA study of the Swiss Working Group of Breast- and Gynecopathologists. PloS one, 2012, 7, e37379PubMedCentralPubMedCrossRefGoogle Scholar
  36. [36]
    Iqbal S, Anderson TJ, Marson LP, Prescott RJ, Dixon JM, Miller WR. MIB-1 assessments in breast cancers. Breast, 2002, 11, 252–256PubMedCrossRefGoogle Scholar
  37. [37]
    Berruti A, Generali D, Kaufmann M, Puztai L, Curigliano G, Aglietta M et al. International expert consensus on primary systemic therapy in the management of early breast cancer: highlights of the Fourth Symposium on Primary Systemic Therapy in the Management of Operable Breast Cancer, Cremona, Italy (2010). Journal of the National Cancer Institute Monographs, 2011, 147–151Google Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Tímea Tőkés
    • 1
  • László Torgyík
    • 1
  • Janina Kulka
    • 2
  • Katalin Borka
    • 2
  • Attila Marcell Szász
    • 2
  • Andrea Tóth
    • 1
  • László Harsányi
    • 3
  • Zsolt Lengyel
    • 4
  • Tamás Györke
    • 5
    • 6
  • Magdolna Dank
    • 1
  1. 1.1st Department of Internal MedicineOncology Division Semmelweis UniversityBudapestHungary
  2. 2.2nd Department of PathologySemmelweis UniversityBudapestHungary
  3. 3.1st Department of SurgerySemmelweis UniversityBudapestHungary
  4. 4.Pozitron Diagnostics Ltd. BudapestBudapestHungary
  5. 5.Department of Nuclear MedicineSemmelweis UniversityBudapestHungary
  6. 6.Scanomed Ltd. BudapestBudapestHungary

Personalised recommendations