Advertisement

Central European Journal of Medicine

, Volume 9, Issue 2, pp 187–192 | Cite as

Biofilm formation and serum susceptibility in Pseudomonas aeruginosa

  • Greta Mikucionyte
  • Asta Dambrauskiene
  • Erika Skrodeniene
  • Astra Vitkauskiene
Research Article
  • 360 Downloads

Abstract

Pseudomonas aeruginosa (P. aeruginosa) is one of the most important opportunistic pathogens. The pathogenicity of P. aeruginosa has been associated with multiple bacterial virulence factors. The aim of this study was to evaluate the association between P. aeruginosa strains obtained from various clinical samples and resistance to antibiotics and pathogenicity factors, such as resistance to serum bactericidal activity and biofilm formation. This study included 121 P. aeruginosa strains isolated from clinical samples; 65 of the isolated P. aeruginosa strains were carbapenem-resistant, and 56 were carbapenem-sensitive. Carbapenem-resistant P. aeruginosa strains were more often resistant to the majority of tested antibiotics, compared to carbapenem-sensitive strains. We did not find any statistically significant difference between resistance to carbapenems and serum resistance and ability of tested P. aeruginosa strains to produce biofilms. Carbapenem-resistant P. aeruginosa strains were recovered from the urinary tract significantly more often (75.0%) than carbapenem-sensitive P. aeruginosa strains (25.0%). Carbapenem-sensitive P. aeruginosa strains were recovered significantly more often from the respiratory tract than carbapenem-resistant strains, 60.0% and 40.0%, respectively. All the P. aeruginosa strains recovered from blood were serum-resistant. P. aeruginosa strains recovered from the respiratory tract and wounds were significantly frequently serum sensitive, 95.6% and 56.6%, respectively. We did not find any differences in biofilm production among the P. aeruginosa strains recovered from different sources.

Keywords

P. aeruginosa Antibiotic susceptibility Biofilm Carbapenem-resistance Serum-bactericidal activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Hauser A.R., Sriram P., Severe Pseudomonas aeruginosa infections. Tackling the conundrum of drug resistance. Postgrad.Med, 2005, 117, 41–48PubMedCrossRefGoogle Scholar
  2. [2]
    Hoban D.J., Biedenbach D.J., Mutnick A.H., Jones R.N., Pathogen of occurrence and susceptibility patterns associated with pneumonia in hospitalized patients in North America: results of the SENTRY Antimicrobial Surveillance Study (2000). Diagn.Microbiol.Infect.Dis, 2003, 45, 279–285PubMedCrossRefGoogle Scholar
  3. [3]
    Giamarellou H., Prescribing guidelines for severe Pseudomonas infections. J.Antimicrob.Chemother, 2002, 49, 229–233PubMedCrossRefGoogle Scholar
  4. [4]
    Saiman L., Siegel J., Infection control in cystic fibrosis. Clin.Microbiol.Rev, 2004, 17, 57–71PubMedCentralPubMedCrossRefGoogle Scholar
  5. [5]
    Cevahir N., Kaleli I., Demir M., Yildirim U., Cevik E., Gurbuz M., Investigation of serum resistance for Pseudomonas aeruginosa and Acinetobacter baumannii strains. Mikrobiyol.Bul, 2006, 40, 251–255PubMedGoogle Scholar
  6. [6]
    Vitkauskiene A., Scheuss S., Sakalauskas R., Dudzevicius V., Sahly H., Pseudomonas aeruginosa strains from nosocomial pneumonia are more serum resistant than P. aeruginosa strains from noninfectious respiratory colonization processes. Infection, 2005, 33, 356–361PubMedCrossRefGoogle Scholar
  7. [7]
    Schiller N.L., Millard R.L., Pseudomonas-infected cystic fibrosis patient sputum inhibits the bactericidal activity of normal human serum. Pediatr.Res, 1983, 17, 747–752PubMedCrossRefGoogle Scholar
  8. [8]
    Young L.S., Armstrong D., Human immunity to Pseudomonas aeruginosa. I. In-vitro interaction of bacteria, polymorphonuclear leukocytes, and serum factors. J.Infect.Dis, 1972, 126, 257–276PubMedCrossRefGoogle Scholar
  9. [9]
    Schiller N.L., Millard R.L., Pseudomonas-infected cystic fibrosis patient sputum inhibits the bactericidal activity of normal human serum. Pediatr.Res, 1983, 17, 747–752PubMedCrossRefGoogle Scholar
  10. [10]
    Hancock R.E., Mutharia L.M., Chan L., Darveau R.P., Speert D.P., Pier G.B., Pseudomonas aeruginosa isolates from patients with cystic fibrosis: a class of serum-sensitive, nontypable strains deficient in lipopolysaccharide O side chains. Infect.Immun, 1983, 42, 170–177PubMedCentralPubMedGoogle Scholar
  11. [11]
    Pier G.B., Ames P., Mediation of the killing of rough, mucoid isolates of Pseudomonas aeruginosa from patients with cystic fibrosis by the alternative pathway of complement. J.Infect.Dis, 1984, 150, 223–228PubMedCrossRefGoogle Scholar
  12. [12]
    Zlosnik J.E., Gunaratnam L.C., Speert D.P., Serum susceptibility in clinical isolates of burkholderia cepacia complex bacteria: development of a growth-based assay for high throughput determination. Front Cell Infect.Microbiol, 2012, 2, 67PubMedCentralPubMedGoogle Scholar
  13. [13]
    Crespo M.P., Woodford N., Sinclair A., Kaufmann M.E., Turton J., Glover J., Velez J.D., Castaneda C.R., Recalde M., Livermore D.M., Outbreak of carbapenem-resistant Pseudomonas aeruginosa producing VIM-8, a novel metallobeta-lactamase, in a tertiary care center in Cali, Colombia. J.Clin.Microbiol, 2004, 42, 5094–5101PubMedCentralPubMedCrossRefGoogle Scholar
  14. [14]
    Hall-Stoodley L., Stoodley P., Evolving concepts in biofilm infections. Cell Microbiol, 2009, 11, 1034–1043PubMedCrossRefGoogle Scholar
  15. [15]
    Mittal R., Sharma S., Chhibber S., Aggarwal S., Gupta V., Harjai K., Correlation between serogroup, in vitro biofilm formation and elaboration of virulence factors by uropathogenic Pseudomonas aeruginosa. FEMS Immunol.Med.Microbiol, 2010, 58, 237–243PubMedCrossRefGoogle Scholar
  16. [16]
    Leid J.G., Kerr M., Selgado C., Johnson C., Moreno G., Smith A., Shirtliff M.E., O’Toole G.A., Cope E.K., Flagellum-mediated biofilm defense mechanisms of Pseudomonas aeruginosa against host-derived lactoferrin. Infect.Immun, 2009, 77, 4559–4566PubMedCentralPubMedCrossRefGoogle Scholar
  17. [17]
    Tam V.H., Chang K.T., Abdelraouf K., Brioso C.G., Ameka M., McCaskey L.A., Weston J.S., Caeiro J.P., Garey K.W., Prevalence, resistance mechanisms, and susceptibility of multidrug-resistant bloodstream isolates of Pseudomonas aeruginosa. Antimicrob.Agents Chemother, 2010, 54, 1160–1164PubMedCentralPubMedCrossRefGoogle Scholar
  18. [18]
    Hocquet D., Berthelot P., Roussel-Delvallez M., Favre R., Jeannot K., Bajolet O., Marty N., Grattard F., Mariani-Kurkdjian P., Bingen E., Husson M.O., Couetdic G., Plesiat P., Pseudomonas aeruginosa may accumulate drug resistance mechanisms without losing its ability to cause bloodstream infections. Antimicrob.Agents Chemother, 2007, 51, 3531–3536PubMedCentralPubMedCrossRefGoogle Scholar
  19. [19]
    European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoints tables for interpretation of MICs and zone diameters, Version 2.0. 2012Google Scholar
  20. [20]
    Sahly H., Aucken H., Benedi V.J., Forestier C., Fussing V., Hansen D.S., Ofek I., Podschun R, Sirot D, Tomas JM, Sandvang D, and Ullmann U, Increased serum resistance in Klebsiella pneumoniae strains producing extended-spectrum beta-lactamases. Antimicrob.Agents Chemother, 2004, 48, 3477–3482PubMedCentralPubMedCrossRefGoogle Scholar
  21. [21]
    Vitkauskiene A., Scheuss S., Sakalauskas R., Dudzevicius V., Sahly H., Pseudomonas aeruginosa strains from nosocomial pneumonia are more serum resistant than P. aeruginosa strains from noninfectious respiratory colonization processes. Infection, 2005, 33, 356–361PubMedCrossRefGoogle Scholar
  22. [22]
    Christensen G.D., Simpson W.A., Bisno A.L., Beachey E.H., Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infect.Immun, 1982, 37, 318–326PubMedCentralPubMedGoogle Scholar
  23. [23]
    Martinez J.L., Baquero F., Interactions among strategies associated with bacterial infection: pathogenicity, epidemicity, and antibiotic resistance. Clin. Microbiol.Rev, 2002, 15, 647–679PubMedCentralPubMedCrossRefGoogle Scholar
  24. [24]
    Drahovska H., Slobodnikova L., Kocincova D., Seman M., Koncekova R., Trupl J., Turna J., Antibiotic resistance and virulence factors among clinical and food enterococci isolated in Slovakia. Folia Microbiol, 2004, 49, 763–768CrossRefGoogle Scholar
  25. [25]
    Baylan O., Nazik H., Bektore B., Citil B.E., Turan D., Ongen B., Ozyurt M., Acikel C.H., Haznedaroglu T., The relationship between antibiotic resistance and virulence factors in urinary Enterococcus isolates. Mikrobiyol.Bul, 2011, 45, 430–445PubMedGoogle Scholar
  26. [26]
    Lagatolla C., Tonin E.A., Monti-Bragadin C., Dolzani L., Gombac F., Bearzi C., Edalucci E., Gionechetti F., Rossolini G.M., Endemic carbapenem-resistant Pseudomonas aeruginosa with acquired metallo-beta-lactamase determinants in European hospital. Emerg.Infect.Dis, 2004, 10, 535–538PubMedCrossRefGoogle Scholar
  27. [27]
    Viedma E., Juan C., Villa J., Barrado L., Orellana M.A., Sanz F., Otero J.R., Oliver A., Chaves F., VIM-2-producing Multidrug-Resistant Pseudomonas aeruginosa ST175 Clone, Spain. Emerg.Infect.Dis, 2012, 18, 1235–1241PubMedGoogle Scholar
  28. [28]
    Kouda S., Ohara M., Onodera M., Fujiue Y., Sasaki M., Kohara T., Kashiyama S., Hayashida S., Harino T., Tsuji T., Itaha H., Gotoh N., Matsubara A., Usui T., Sugai M., Increased prevalence and clonal dissemination of multidrug-resistant Pseudomonas aeruginosa with the blaIMP-1 gene cassette in Hiroshima. J.Antimicrob.Chemother, 2009, 64, 46–51PubMedCrossRefGoogle Scholar
  29. [29]
    Manu D., Lupan I., Popescu O., Mechanisms of pathogenesis and antibiotics resistance in Escherichia coli. Annals of RSCB, 2011, 2, 7–19Google Scholar
  30. [30]
    Harjai K., Khandwahaa R.K., Mittal R., Yadav V., Gupta V., Sharma S., Effect of pH on production of virulence factors by biofilm cells of Pseudomonas aeruginosa. Folia Microbiol, 2005, 50, 99–102CrossRefGoogle Scholar
  31. [31]
    Hostacka A., Ciznar I., Slobodnikova L., Kotulova D., Clinical pseudomonas aeruginosa: potential factors of pathogenicity and resistance to antimicrobials. Folia Microbiol, 2006, 51, 633–638CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Greta Mikucionyte
    • 1
  • Asta Dambrauskiene
    • 1
  • Erika Skrodeniene
    • 1
  • Astra Vitkauskiene
    • 1
  1. 1.Department of Laboratory Medicine, Medical AcademyLithuanian University of Health SciencesKaunas LTLithuania

Personalised recommendations