Central European Journal of Medicine

, Volume 8, Issue 6, pp 766–775 | Cite as

The influence of pemirolast on autonomic imbalance in rat cystitis model

  • Łukasz Dobrek
  • Agnieszka Baranowska
  • Piotr J. Thor
Research Article


Cyclophosphamide (CP) treatment is associated with the risk of haemorrhagic cystitis (HC). Moreover, CP-induced HC is complicated by autonomic nervous system (ANS) dysfunction. Pemirolast is thought to be a mast cell stabiliser that inhibits the release of many inflammatory mediators and sensory neuropeptides, and thus, it may be considered a potential chemoprotective HC agent. The aim of the study was to indirectly estimate the effect of pemirolast in experimental HC by measuring ANS activity with the heart rate variability (HRV) method. In CP-treated rats, we found a decreasing trend of overall autonomic activity, together with an imbalance between the main components, and a dominant very low frequency (VLF) power component. Pemirolast treatment did not improve the total HRV power value or the main non-normalized HRV components. Moreover, CP-HC animals treated with pemirolast displayed a different disproportion of normalized spectral components as compared to both control and CP-HC animals without pemirolast treatment, with the balance between normalized low frequency (nLF) and normalized high frequency (nHF) shifted towards nLF. This finding, together with a relatively high VLF tension, indicates that the pemirolast treatment resulted in high sympathetic activity that may contribute to HC exacerbation; thus, this agent seems to be ineffective in CP-induced HC.


Pemirolast (PEM) Cyclophosphamide (CP) Haemorrhagic cystitis (HC) Autonomic nervous system (ANS) Heart rate variability (HRV) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Brock N., Oxazaphosphorine cytostatics: pastpresent-future: seventh cain memorial award lecture, Cancer Res. J., 1989, 49, 1–7Google Scholar
  2. [2]
    Brock N., The history of the oxazaphosphorine cytostatics, Cancer, 1996, 78, 542–547PubMedCrossRefGoogle Scholar
  3. [3]
    Ross W.C., The chemistry of cytotoxic alkylating agents, Adv. Cancer Res., 1953, 1, 397–449PubMedCrossRefGoogle Scholar
  4. [4]
    Brock N., Ideas and reality in the development of cancer chemiotherapeutic agents, with particular reference to oxazaphosphorine cytostatics, J. Cancer Res. Clin. Oncol., 1986, 111, 1–12PubMedCrossRefGoogle Scholar
  5. [5]
    Kerbush T., de Kraker J., Keizer J., van Putten J.W.G., Groen H.J.M., Jansen R.L.H., et al., Clinical pharmacokinetics and pharmacodynamics of ifosfamide and its metabolits, Clin. Pharmacokinet., 2001, 40, 41–62CrossRefGoogle Scholar
  6. [6]
    Friedman O.M., Seligman A.M., Preparation of N-phosphorylated derivatives of bis-β-chloroethylamine, J. Am. Chem. Soc., 1954, 76, 655–658CrossRefGoogle Scholar
  7. [7]
    Lawson M., Vasilaras A., De Vries A., Mactaggart P., Nicol D., Urological implications of cyclophosphamide and ifosfamide, Scand. J. Urol. Nephrol., 2008, 42, 309–317PubMedCrossRefGoogle Scholar
  8. [8]
    Levine L.A., Richie J.P., Urological complications of cyclophosphamide, J. Urol., 1989, 141, 1063–1069PubMedGoogle Scholar
  9. [9]
    Korkmaz A., Topal T., Oter S., Pathophysiological aspects of cyclophosphamide and ifosfamide induced hemorrhagic cystitis; implication of reactive oxygen and nitrogen species as well as PARP activation, Cell Biol. Toxicol., 2007, 23, 303–312PubMedCrossRefGoogle Scholar
  10. [10]
    Dobrek Ł., Thor P.J., Bladder urotoxicity pathophysiology induced by the oxazaphosphorine alkylating agents and its chemoprevention, Post. Hig. Med. Dosw., 2012, 66, 592–602CrossRefGoogle Scholar
  11. [11]
    Holzer P., Local effector functions of capsaicin-sensitive sensory nerve endings: involvement of tachykinins, calcitonin gene-related peptide and other neuropeptides, Neuroscience, 1988, 24, 739–768PubMedCrossRefGoogle Scholar
  12. [12]
    Dobrek Ł., Thor P., Heart rate variability in overactive bladder experimental model, Arch. Med. Sci., (in press, in English), DOI: 10.5114/aoms.2012.30946Google Scholar
  13. [13]
    Gyorfi A., Fazekas A., Posch E., Irmes F., Rosivall L., Role of histamine in the development of neurogenic inflammation of rat oral mucosa, Agents Action, 1991, 32, 229–236CrossRefGoogle Scholar
  14. [14]
    Steinhoff M., Stander S., Seeliger S., Ansel J.C., Schmelz M., Luger T., Modern aspects of cutaneous inflammation, Arch. Dermatol., 2003, 139, 1479–1488PubMedCrossRefGoogle Scholar
  15. [15]
    Kemp J.P., Bernstein I.L., Bierman C.W., Li J.T., Siegel S.C., Spangenberg R.D., et al., Pemirolast, a new oral nonbronchodilator drug for chronic asthma, Ann. Allegry, 1992, 68, 488–491Google Scholar
  16. [16]
    Kawashima T., Iwamoto I., Nakagawa N., Tomioka H., Yoshida S., Inhibitory effect of pemirolast, a novel antiallergic drug, on leukotriene C4 and granule protein release from human eosinophils, Int. Arch. Allergy Immunol., 1994, 103, 405–409PubMedCrossRefGoogle Scholar
  17. [17]
    Fujimiya H., Nakagawa S., Miyata H., Nozawa Y., Effect of a novel antiallergic drug, pemirolast, on activation of rat peritoneal mast cells: inhibition of exocytotic response and membrane phospholipid turnover, Int. Arch. Allergy Immunol., 1991, 96, 62–67CrossRefGoogle Scholar
  18. [18]
    Itoh Y., Sendo T., Hirakawa T., Takasaki S., Goromaru T., Nakano H., et al., Pemirolast potently attenuates paclitaxel hypersensitivity reactions through inhibition of the release of sensory neuropeptides in rats, Neuropharmacology, 2004, 46, 888–894PubMedCrossRefGoogle Scholar
  19. [19]
    Yahata H., Saito M., Sendo T., Itoh Y., Uchida M., Hirakawa T., et al., Prophylactic effect of pemirolast, an antiallergic agent, against hypersensitivity reactions to paclitaxel in patients with ovarian cancer, Int. J. Cancer, 2006, 118, 2626–2638Google Scholar
  20. [20]
    Chopra B., Barrick S.R., Meyers S., Beckel J.M., Zeidel M.L., Ford A.P.D.W., et al., Expression and function of bradykinin B1 and B2 receptors in normal and inflamed rat urinary bladder urothelium, J. Physiol., 2005, 562(Pt 3), 859–871PubMedCrossRefGoogle Scholar
  21. [21]
    Dinis P., Churrua A., Avelino A., Yaqoob M., Bevan S., Nagy I., et al., Anandamide-evoked activation of vanilloid receptor 1 contributes to the development of bladder hyperreflexia and nociceptive transmission to spinal dorsal horn neurons in cystitis, J. Neurosci., 2004, 24, 11253–11263PubMedCrossRefGoogle Scholar
  22. [22]
    Tatsushima Y., Egashira N., Kawashiri T., Mihara Y., Yano T., Mishima K., et al., Involvement of substance P in peripheral neuropathy induced by paclitaxel but not oxaliplatin, J. Pharmacol. Exp. Therap., 2011, 337, 226–235CrossRefGoogle Scholar
  23. [23]
    Tatsushima Y., Egashira N., Matsushita N., Kurobe K., Kawashiri T., Yano T., et al., Pemirolast reduces cisplatin-induced kaolin intake in rats, Eur. J. Pharmacol., 2011, 661, 57–62PubMedCrossRefGoogle Scholar
  24. [24]
    Gohda T., Ra C., Hamada C., Tsuge T., Kawachi H., Tomino Y., Suppressive activity of pemirolast potassium, an antiallergic drug, on glomerulonephritis. Studies in glomerulonephritis model rats and in patients with chronic glomerulonephritis concerrently affected by allergic rhinitis, Arzneimittelforschung, 2008, 58, 18–23 (in German)PubMedGoogle Scholar
  25. [25]
    Malik M., Bigger J.T., Camm A.J., Guidelines. Heart rate variability. Standards of measurements, physiological interpretations and clinical use. Task Force of The European Society of Cardiology and The North American Society of Pacing and Electrophysiology, Eur. Heart J., 1996, 17, 354–381CrossRefGoogle Scholar
  26. [26]
    Maggi C.A., Meli A., Suitability of urethane anesthesia for physiopharmacological investigations in various systems. Part 1: general considerations, Experientia, 1986, 42, 109–114PubMedCrossRefGoogle Scholar
  27. [27]
    Maggi C.A., Meli A., Suitability of urethane anesthesia for physiopharmacological investigations in various systems. Part 2: cardiovascular system, Experientia, 1986, 42, 292–297PubMedCrossRefGoogle Scholar
  28. [28]
    Morais M.M., Belarmino-Filho J.N., Brito G.A.C., Ribeiro R.A., Pharmacological and histopathological study of cyclophosphamide-induced hemorrhagic cystitis — comparison of the effects of dexamethasone and Mesna. Braz. J. Med. Biol. Res., 1999, 32, 1211–1215PubMedCrossRefGoogle Scholar
  29. [29]
    Schroder A., Newgreen D., Andersson K.E., Detrusor responses to prostaglandin e2 and bladder outlet obstruction in wild-type and ep1 receptor knockout mice, J. Urol., 2004, 172, 1166–1170PubMedCrossRefGoogle Scholar
  30. [30]
    Zeng J., Pan C., Jiang C., Lindström S., Cause of residual urine in bladder outlet obstruction: an experimental study in the rat, J. Urol., 2012, 188, 1027–1032PubMedCrossRefGoogle Scholar
  31. [31]
    Bilchick K.C., Berger R.D., Heart rate variability, J. Cardiovasc. Electrophysiol., 2006, 17, 693–694Google Scholar
  32. [32]
    Thayer J.F., Ahs F., Fredrikson M., Sollers J.J., Wager T.D., A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health, Neurosci. Biobehav. Rev., 2012, 36, 747–756PubMedCrossRefGoogle Scholar
  33. [33]
    Stauss H.M., Heart rate variability, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2003, 285, R927–R931PubMedGoogle Scholar
  34. [34]
    Pumprla J., Howorka K., Groves D., Chester M., Nolan J., Functional assessment of heart rate variability: physiological basis and practical applications, Int. J. Cardiol., 2002, 84, 1–14PubMedCrossRefGoogle Scholar
  35. [35]
    Taylor J.A, Carr D.L., Myers C.W., Eckberg D.L., Mechanisms underlying very low frequency RRinterval oscillations in humans, Circulation, 1998, 98, 547–555PubMedCrossRefGoogle Scholar
  36. [36]
    Silva Soares P., da Nobrega A.C.L., Ushizima M.R., Irigoyen M.C.C., Cholinergic stimulation with piridostigmine increases heart rate variability and baroreflex sensivity in rats, Auton. Neurosci., 2004, 113, 24–31CrossRefGoogle Scholar
  37. [37]
    Thayer J.F., Fischer J.E., Heart rate variability, overnight urinary norepinephrine and C-reactive protein: evidence for the cholinergic anti-inflammatory pathway in healthy human adults, J. Int. Med., 2009, 265, 439–447CrossRefGoogle Scholar
  38. [38]
    Tracey K.J., The inflammatory reflex, Nature, 2002, 420, 853–859PubMedCrossRefGoogle Scholar
  39. [39]
    Thayer J.F., Vagal tone and the inflammatory re- flex, Cleve. Clin. J. Med., 2009, 76, S23–S26PubMedCrossRefGoogle Scholar
  40. [40]
    Flierl M.A., Rittirsch D., Nadeau B.A., Chen A.J., Sarma J.V., Zetoune F.S., et al., Phagocyte-derived catecholamines enhance acute inflammatory injury, Nature, 2007, 449, 721–725PubMedCrossRefGoogle Scholar
  41. [41]
    Flierl M.A., Rittirsch D., Nadeau B.A., Sarma J.V., Day D.E., Lentsch A.B., et al., Upregulation of phagocyte-derived catecholamines augments the acute inflammatory response, PLos One, 2009, 4, e4414PubMedCrossRefGoogle Scholar
  42. [42]
    Johnson J.D., Campisi J., Sharkey C.M., Kennedy S.L., Nickerson M., Greenwood B.N., Fleshner M., Catecholamines mediate stress-induced increases in peripheral and central inflammatory cytokines, Neuroscience, 2005, 135, 1295–1307PubMedCrossRefGoogle Scholar
  43. [43]
    Elenkov I.J., Papanicolaou D.A., Wilder R.L., Chrousos G.P., Modulatory effects of glucocorticoids and catecholamines on human interleukin-12 and interleukin-10 production: clinical implications, Proc. Assoc. Am. Physicians, 1996, 108, 374–381PubMedGoogle Scholar
  44. [44]
    Maestroni G.J.M., Mazzola P., Langerhans cells β2-adrenoceptors: role in migration, cytokine production, Th priming and contact hypersensitivity, J. Neuroimmunol., 2003, 144, 91–99PubMedCrossRefGoogle Scholar
  45. [45]
    Connor T.J., Brewer C., Kelly J.P., Harkin A., Acute stress suppresses pro-inflammatory cytokines TNF-α and Il-1β independent of a catecholamine- driven increase in Il-10 production, J. Neuroimmunol., 2005, 159, 119–128PubMedCrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Łukasz Dobrek
    • 1
  • Agnieszka Baranowska
    • 1
  • Piotr J. Thor
    • 1
  1. 1.Department of PathophysiologyJagiellonian University Medical CollegeKrakówPoland

Personalised recommendations