Advertisement

Central European Journal of Medicine

, Volume 8, Issue 6, pp 749–761 | Cite as

Parahippocampal corpora amylacea and neuronal lipofuscin in human aging

  • Mirjana D. Bakić
  • Ivan D. Jovanović
  • Slađana Z. Ugrenović
  • Ljiljana P. Vasović
  • Miljan S. Krstić
  • Natalija J. Stefanović
  • Miljana N. Pavlović
  • Vladimir S. Živković
Research Article

Abstract

The aim of this research was to quantify the number of corpora amylacea and lipofuscin-bearing neurons in the parahippocampal region of the brain. Right parahippocampal gyrus specimens of 30 cadavers were used as material for histological and morphometric analyses. A combined Alcian Blue and Periodic Acid-Schiff technique was used for identification and quantification of corpora amylacea and lipofuscin-bearing neurons. Immunohistochemistry was performed using S100 polyclonal, neuron-specific enolase and glial fibrillary acidic protein monoclonal antibodies for differentiation of corpora amylacea and other spherical inclusions of the aging brain. Cluster analysis of obtained data showed the presence of three age groups (median age: I = 41.5, II = 68, III = 71.5). The second group was characterized by a significantly higher numerical density of subcortical corpora amylacea and number of lipofuscin-bearing neurons than other two groups. Values of the latter cited parameters in the third group were insignificantly higher than the first younger group. Linear regression showed that number of parahippocampal lipofuscin-bearing neurons significantly predicts numerical density of subcortical corpora amylacea. The above results suggest that more numerous parahippocampal region corpora amylacea and lipofuscin-bearing neurons in some older cases might represent signs of its’ neurons quantitatively-altered metabolism.

Keywords

Parahippocampal gyrus Corpora amylacea Lipofuscin Aging Morphometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Blaizot X., Martinez-Marcos A., Arroyo-Jimenez Md Mdel M., Marcos P., Artacho-Pérula E., Muñoz M., et al., The parahippocampal gyrus in the baboon: anatomical, cytoarchitectonic and magnetic resonance imaging (MRI) studies, Cereb. Cortex., 2004, 14, 231–246PubMedCrossRefGoogle Scholar
  2. [2]
    Van Hoesen GW., Anatomy of the medial temporal lobe Magn. Reson. Imaging., 1995, 13, 1047–1055CrossRefGoogle Scholar
  3. [3]
    Eichenbaum H., Lipton PA., Towards a functional organization of the medial temporal lobe memory system: role of the parahippocampal and medial entorhinal cortical areas, Hippocampus., 2008, 18, 1314–1324PubMedCrossRefGoogle Scholar
  4. [4]
    Keller JN., Age-related neuropathology, cognitive decline, and Alzheimer’s disease, Ageing. Res. Rev., 2006, 5, 1–13PubMedCrossRefGoogle Scholar
  5. [5]
    Tisserand DJ., Visser PJ., van Boxtel MP., Jolles J., The relation between global and limbic brain volumes on MRI and cognitive performance in healthy individuals across the age range, Neurobiol. Aging., 2000, 21, 569–576PubMedCrossRefGoogle Scholar
  6. [6]
    Du AT., Schuff N., Amend D., Laakso MP., Hsu YY., Jagust WJ., et al., Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer’s disease, J. Neurol. Neurosurg. Psychiatry., 2001, 71, 441–447PubMedCrossRefGoogle Scholar
  7. [7]
    Goncharova II., Dickerson BC., Stoub TR., deToledo-Morrell L., MRI of human entorhinal cortex: a reliable protocol for volumetric measurement. Neurobiol. Aging., 2001, 22, 737–745PubMedCrossRefGoogle Scholar
  8. [8]
    Bottino CM., Castro CC., Gomes RL., Buchpiguel CA., Marchetti RL., Neto MR., Volumetric MRI measurements can differentiate Alzheimer’s disease, mild cognitive impairment, and normal aging, Int. Psychogeriatr., 2002, 14, 59–72PubMedCrossRefGoogle Scholar
  9. [9]
    Pantel J., Kratz B., Essig M., Schröder J., Parahippocampal volume deficits in subjects with aging-associated cognitive decline, Am. J. Psychiatry., 2003, 160, 379–382PubMedCrossRefGoogle Scholar
  10. [10]
    Pennanen C., Kivipelto M., Tuomainen S., Hartikainen P., Hänninen T., Laakso MP., et al., Hippocampus and entorhinal cortex in mild cognitive impairment and early AD, Neurobiol. Aging., 2004, 25, 303–310PubMedCrossRefGoogle Scholar
  11. [11]
    Burgmans S., van Boxtel MP., van den Berg KE., Gronenschild EH., Jacobs HI., Jolles J., et al., The posterior parahippocampal gyrus is preferentially affected in age-related memory decline, Neurobiol. Aging., 2011, 32, 1572–1578PubMedCrossRefGoogle Scholar
  12. [12]
    Wang H., Golob E., Bert A., Nie K., Chu Y., Dick MB., et al., Alterations in regional brain volume and individual MRI-guided perfusion in normal control, stable mild cognitive impairment, and MCI-AD converter, J. Geriatr. Psychiatry. Neurol., 2009, 22, 35–45PubMedCrossRefGoogle Scholar
  13. [13]
    Sánchez-Benavides G., Gómez-Ansón B., Molinuevo JL., Blesa R., Monte GC., Buschke H., et al., Medial temporal lobe correlates of memory screening measures in normal aging, MCI, and AD. J. Geriatr. Psychiatry. Neurol., 2010, 23, 100–108PubMedCrossRefGoogle Scholar
  14. [14]
    Echávarri C., Aalten P., Uylings HB., Jacobs HI., Visser PJ., Gronenschild EH., et al., Atrophy in the parahippocampal gyrus as an early biomarker of Alzheimer’s disease, 2011, Brain. Struct. Funct., 2011, 215, 265–271PubMedCrossRefGoogle Scholar
  15. [15]
    Miettinen PS., Pihlajamäki M., Jauhiainen AM., Niskanen E., Hänninen T., Vanninen R., et al., Structure and function of medial temporal and posteromedial cortices in early Alzheimer’s disease, 2011, Eur. J. Neurosci., 34, 320–330PubMedCrossRefGoogle Scholar
  16. [16]
    Raz N., Gunning-Dixon FM., Head D., Dupuis JH., Acker JD., Neuroanatomical correlates of cognitive aging: evidence from structural magnetic resonance imaging, Neuropsychology., 1998, 12, 95–114PubMedCrossRefGoogle Scholar
  17. [17]
    Raz N., Rodrigue KM., Head D., Kennedy KM., Acker JD., Differential aging of the medial temporal lobe: a study of a five-year change, Neurology., 2004, 62, 433–438PubMedCrossRefGoogle Scholar
  18. [18]
    Raz N., Lindenberger U., Rodrigue KM., Kennedy KM., Head D., Williamson A., et al., Regional brain changes in aging healthy adults: general trends, individual differences and modifiers, Cereb. Cortex., 2005, 15, 1676–1689PubMedCrossRefGoogle Scholar
  19. [19]
    Raz N., Ghisletta P., Rodrigue KM., Kennedy KM., Lindenberger U., Trajectories of brain aging in middle-aged and older adults: regional and individual differences, Neuroimage., 2010, 51, 501–511PubMedCrossRefGoogle Scholar
  20. [20]
    Anderton BH., Ageing of the brain, Mech. Ageing. Dev., 2002, 123, 811–817PubMedCrossRefGoogle Scholar
  21. [21]
    Rapp PR., Deroche PS., Mao Y., Burwell RD., Neuron number in the parahippocampal region is preserved in aged rats with spatial learning deficits, Cereb. Cortex., 2002, 12, 1171–1179PubMedCrossRefGoogle Scholar
  22. [22]
    Heinsen H., Henn R., Eisenmenger W., Götz M., Bohl J., Bethke B., et al., Quantitative investigations on the human entorhinal area: left-right asymmetry and age-related changes, Anat. Embryol. (Berl)., 1994, 190, 181–194PubMedGoogle Scholar
  23. [23]
    Gazzaley AH., Thakker MM., Hof PR., Morrison JH., Preserved number of entorhinal cortex layer II neurons in aged macaque monkeys, Neurobiol. Aging., 1997, 18, 549–553PubMedCrossRefGoogle Scholar
  24. [24]
    Merrill DA., Roberts JA., Tuszynski MH., Conservation of neuron number and size in entorhinal cortex layers II, III, and V/VI of aged primates, J. Comp. Neurol., 2000, 422, 396–401PubMedCrossRefGoogle Scholar
  25. [25]
    Stranahan AM., Mattson MP., Selective vulnerability of neurons in layer II of the entorhinal cortex during aging and Alzheimer’s disease, Neural. Plast., 2010, http://www.hindawi.com/journals/np/2010/108190 Google Scholar
  26. [26]
    Derflinger S., Sorg C., Gaser C., Myers N., Arsic M., Kurz A., et al., Grey-matter atrophy in Alzheimer’s disease is asymmetric but not lateralized, J. Alzheimers. Dis., 2011, 25, 347–357.PubMedGoogle Scholar
  27. [27]
    Cavanagh JB., Corpora-amylacea and the family of polyglucosan diseases. Brain. Res. Brain. Res. Rev., 1999, 29, 265–295PubMedCrossRefGoogle Scholar
  28. [28]
    Kimura T., Takamatsu J., Miyata T., Miyakawa T., Horiuchi S., Localization of identified advanced glycation end-product structures, N epsilon(carboxymethyl)lysine and pentosidine, in age-related inclusions in human brains, Pathol. Int., 1998, 48, 575–579PubMedCrossRefGoogle Scholar
  29. [29]
    Singhrao SK., Neal JW., Piddlesden SJ., Newman GR., New immunocytochemical evidence for a neuronal/oligodendroglial origin for corpora amylacea, Neuropathol. Appl. Neurobiol., 1994, 20, 66–73PubMedCrossRefGoogle Scholar
  30. [30]
    Singhrao SK., Morgan BP., Neal JW., Newman GR., A functional role for corpora amylacea based on evidence from complement studies, Neurodegeneration., 1995, 4, 335–345PubMedCrossRefGoogle Scholar
  31. [31]
    Buervenich S., Olson L., Galter D., Nestin-like immunoreactivity of corpora amylacea in aged human brain, Brain. Res. Mol. Brain. Res., 2001, 94, 204–208PubMedCrossRefGoogle Scholar
  32. [32]
    Double KL., Dedov VN., Fedorow H., Kettle E., Halliday GM., Garner B., et al., The comparative biology of neuromelanin and lipofuscin in the human brain, Cell. Mol. Life. Sci., 2008, 65, 1669–1682PubMedCrossRefGoogle Scholar
  33. [33]
    Sulzer D., Mosharov E., Talloczy Z., Zucca FA., Simon JD., Zecca L., Neuronal pigmented autophagic vacuoles: lipofuscin, neuromelanin, and ceroid as macroautophagic responses during aging and disease, J. Neurochem., 2008, 106, 24–36PubMedCrossRefGoogle Scholar
  34. [34]
    Boellaard JW., Harzer K., Schlote W., Variations of the ultrastructure of neuronal lipofuscin during childhood and adolescence in the human Ammon’s horn, Ultrastruct. Pathol., 2006, 30, 387–391PubMedCrossRefGoogle Scholar
  35. [35]
    Russ J.C., Image analysis of food microstructure, 1st ed., CRC Press Taylor &Francis Group, Boca Raton Florida, 2004CrossRefGoogle Scholar
  36. [36]
    Kališnik M., Blejec A., Pajer Z., Majhenc J., Metric characteristics of various methods for numerical density estimation in transmission light microscopy — a computer simulation, 2001, Image. Anal. Stereol. 2001, 20, 15–25CrossRefGoogle Scholar
  37. [37]
    Leel-Ossy L., New data on the ultrastructure of the corpus amylaceum (polyglucosan body), Pathol. Oncol. Res., 2001, 7, 145–150PubMedCrossRefGoogle Scholar
  38. [38]
    Nishimura A., Sawada S., Ushiyama I., Yamamoto Y., Nakagawa T., Tanegashima A., et al., Lectinhistochemical detection of degenerative glycoconjugate deposits in human brain, Forensic. Sci. Int., 2000, 113 265–269PubMedCrossRefGoogle Scholar
  39. [39]
    Abel TJ., Hebb AO., Keene CD., Born DE., Silbergeld DL., Parahippocampal corpora amylacea: case report, Neurosurgery., 2010, 66, E1206–1207PubMedCrossRefGoogle Scholar
  40. [40]
    Selmaj K., Pawłowska Z., Walczak A., Koziołkiewicz W., Raine CS., Cierniewski CS., Corpora amylacea from multiple sclerosis brain tissue consists of aggregated neuronal cells. Acta. Biochim. Pol., 2008, 55, 43–49.PubMedGoogle Scholar
  41. [41]
    Hoyaux D., Decaestecker C., Heizmann CW., Vogl T., Schäfer BW., Salmon I., et al., S100 proteins in Corpora amylacea from normal human brain, Brain. Res., 2000, 867, 280–288PubMedCrossRefGoogle Scholar
  42. [42]
    Takahashi K., Iwata K., Nakamura H., Intra-axonal corpora amylacea in the CNS, Acta. Neuropathol., 1977, 37, 165–167PubMedCrossRefGoogle Scholar
  43. [43]
    Nishio S., Morioka T., Kawamura T., Fukui K., Nonaka H., Matsushima M., Corpora amylacea replace the hippocampal pyramidal cell layer in a patient with temporal lobe epilepsy, Epilepsia., 2001, 42, 960–962PubMedCrossRefGoogle Scholar
  44. [44]
    Gray DA., Woulfe J., Lipofuscin and aging: a matter of toxic waste, Sci. Aging. Knowledge. Environ., 2005, http://sageke.sciencemag.org/cgi/content/full/2005/5/re1 Google Scholar
  45. [45]
    Riga D., Riga S., Halalau F., Schneider F., Brain lipopigment accumulation in normal and pathological aging, Ann. N. Y. Acad. Sci., 2006, 1067, 158–163PubMedCrossRefGoogle Scholar
  46. [46]
    Nakano M., Oenzil F., Mizuno T., Gotoh S., Agerelated changes in the lipofuscin accumulation of brain and heart, Gerontology., 1995, 41, 69–79PubMedCrossRefGoogle Scholar
  47. [47]
    Shimada A., Keino H., Kawamura N., Chiba Y., Hosokawa M., Limbic structures are prone to agerelated impairments in proteasome activity and neuronal ubiquitinated inclusions in SAMP10 mouse: a model of cerebral degeneration, Neuropathol. Appl. Neurobiol., 2008, 34, 33–51PubMedGoogle Scholar
  48. [48]
    Kimura T., Fujise N., Ono T., Shono M., Yuzuriha T., Katsuragi S., et al., Identification of an aging-related spherical inclusion in the human brain, Pathol. Int., 2002, 52, 636–642PubMedCrossRefGoogle Scholar
  49. [49]
    Raz N., Rodrigue KM., Differential aging of the brain: patterns, cognitive correlates and modifiers, Neurosci. Biobehav. Rev., 2006, 30, 730–748PubMedCrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Mirjana D. Bakić
    • 1
  • Ivan D. Jovanović
    • 2
  • Slađana Z. Ugrenović
    • 2
  • Ljiljana P. Vasović
    • 2
  • Miljan S. Krstić
    • 3
  • Natalija J. Stefanović
    • 4
  • Miljana N. Pavlović
    • 2
  • Vladimir S. Živković
    • 2
  1. 1.Medical Faculty, Department of AnatomyUniversity of PodgoricaPodgoricaMontenegro
  2. 2.Medical Faculty, Department of AnatomyUniversity of NišNišSerbia
  3. 3.Medical Faculty, Department of Pathology, Clinical Center NišUniversity of NišNišSerbia
  4. 4.Faculty of Sport and Physical Education, Department of medicineUniversity of NišNišSerbia

Personalised recommendations