Central European Journal of Medicine

, Volume 8, Issue 5, pp 571–576 | Cite as

Fracture risk prediction with FRAX in Slovak postmenopausal women

  • Eva Némethová
  • Zdenko Killinger
  • Juraj Payer
Research Article



Current Slovak treatment thresholds in osteoporosis are based on bone mineral density (BMD) or a previous fracture. Some patients at high risk for fractures may not be identified. FRAX (Fracture Risk Assessment Tool) is based on patient risk profile assessment and calculates 10-year fracture risks. Using FRAX, treatment initiation could be more patient-specific.

Aim of study

To evaluate the risk profile with FRAX in slovak postmenopausal women, to identify those at high risk of fracture according to NOF (National Osteporosis Foundation) intervention thresholds based on FRAX and to compare this approach to current treatment thresholds.


We measured BMD at lumbar spine, femoral neck, total hip and calculated 10-year absolute fracture risks with the slovak version of FRAX in 365 patients.


Average risk of major osteoporotic fracture was 10,39% and hip fracture 3,00%. 109 patients were eligible for treatment according to actual treatment criteria (88 based on BMD and 21 with previous fracture). In addition, 57 high risk osteopenic patients were identified by NOF thresholds using FRAX, who should be also considered for treatment.


Using FRAX and NOF thresholds it’s possible to identify high risk patients who don’t fulfill current treatment criteria but may profit from treatment.


Osteoporosis Fracture risk FRAX Treatment thresholds 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Kanis J.A., McCloskey E.V., Johansson H., Cooper C., Rizzoli R., Reginster J.Y., et al., European guideance for the diagnosis and management of osteoporosis in postmenopausal women, Osteoporos Int, 2013, 24(1), 23–57PubMedCrossRefGoogle Scholar
  2. [2]
    Magaziner J., Simonsick E.M., Kashner T.M., Hebel J.R., Kenzora J.E., Predictors of functional recovery one year following hospital discharge for hip fracture: a prospective study, J Gerontol, 1990, 45(3), M101–107PubMedCrossRefGoogle Scholar
  3. [3]
    Payer J., Killinger Z., et al., Osteoporóza, Herba, Bratislava 2012Google Scholar
  4. [4]
    National Osteoporosis Foundation, Clinician’s Guide to Prevention and Treatment of Osteoporosis, Washington, DC: National Osteoporosis Foundation, 2010Google Scholar
  5. [5]
    McCloskey E.V., Johansson H., Oden A., Kanis J.A., Fracture risk assesment, Clinical Biochemistry, 2012,45, 887–893PubMedCrossRefGoogle Scholar
  6. [6]
    Kanis J.A., Hans D., Cooper C., Baim S., Bilezikian J.P., Binkley N., et al., Interpretation and use of FRAX in clinical practice. Osteoporos Int, 2011, 22, 2395–2411PubMedCrossRefGoogle Scholar
  7. [7]
    Gehlbach S.H., Bigelow C., Heimisdottir M., May S., Walker M., Kirkwood J.R., Recognition of vertebral fracture in a clinical setting, Osteoporos Int, 2000, 11(7), 577–582PubMedCrossRefGoogle Scholar
  8. [8]
    Hans D.B., Kanis J.A., Baim S., Bilezikian J.P., Binkley N., Cauley J.A., et al., Joint official positions of the International Society for Clinical Densitometry and International Osteoporosis Foundation on FRAX, Journal of Clinical Densitometry: Assessment of Skeletal Health, 2011, 14(3), 171–180CrossRefGoogle Scholar
  9. [9]
    Sornay-Rendu E., Munoz F., Delmas P.D., Chapurlat RD., The FRAX tool in French women: how well does it describe the real incidence of fracture in the OFELY cohort? J Bone Miner Res, 2010, 25, 2101–2107PubMedCrossRefGoogle Scholar
  10. [10]
    González-Macías J., Marin F., Vila J., Díez-Pérez A., Probability of fractures predicted by FRAX and observed incidence in the Spanish ECOSAP study cohort, Bone 2012, 50(1), 373–377PubMedCrossRefGoogle Scholar
  11. [11]
    Fraser L.A., Langsetmo L., Berger C., Ioannidis G., Goltzman D., Adachi J.D., et al, Fracture prediction and calibration of a Canadian FRAX(R) tool: a population-based report from CaMos, Osteoporos Int, 22, 829–837Google Scholar
  12. [12]
    Tremollieres F.A., Pouillés J.M., Drewniak N., Laparra J., Ribot C.A., Fargent-Molina P., Fracture risk prediction using BMD and clinical risk factors in early postmenopausal women: sensitivity of the WHO FRAX tool, J Bone Miner Res, 2010, 25(5), 1002–1009PubMedCrossRefGoogle Scholar
  13. [13]
    Aubry-Rozier B., Stoll D., Krieg M.A., Lamy O., Hans D., What was your fracture risk evaluated by FRAX the day before your osteoporotic fracture?, Clin Rheumatol, 2013, 32(2), 219–223PubMedCrossRefGoogle Scholar
  14. [14]
    Ensrud K.E., Lui L.Y., Taylor B.C., Schousboe J.T., Donaldson M.G., Fink H.A., et al., A comparison of prediction models for fractures in older women: is more better?, Arch Int Med, 2009, 169(22), 2087–2094CrossRefGoogle Scholar
  15. [15]
    Donaldson M.G., Palermo L., Schousboe J.T., Ensrud K.E., Hochberg M.C., Cummings S.R., FRAX and risk of vertebral fractures: The fracture intervention trial, Journal of Bone and Mineral Research, 2009, 24(11), 1793–1799PubMedCrossRefGoogle Scholar
  16. [16]
    Pluskiewicz W., Adamczyk P., Franek E., Leszczynski P., Sewerynek E., Wirchowska H., et al, Ten-year probability of osteoporotic fracture in 2012 Polish women assessed by FRAX and nomogram by Nguyen et al.-Conformity between methods and their clinical utility, Bone 2010,46(6),1661–1667PubMedCrossRefGoogle Scholar
  17. [17]
    Cummins N.M., Poku E.K., Towler M.R., O’Driscoll O.M., Ralston S.H., Clinical Risk Factors for Osteoporosis in Ireland and the UK: A Comparison of FRAX and QFractureScores, Calcif Tissue Int, 2011, 89,172–177PubMedCrossRefGoogle Scholar
  18. [18]
    Waris V.J., Sirola J.P., Kiviniemi V.V., Tuppurainen M.T., Waris V.P., Mikkeli Osteoporosis Index Identifies Fracture Risk Factors and Osteoporosis and Intervention Thresholds Parallel with FRAX, Journal of Osteoporosis, 2011, 2011, ID 732560, 7 pages doi:10.4061/2011/732560Google Scholar
  19. [19]
    McCloskey E., Johansson H., Oden A., Kanis J.A., Fracture risk assessment, Clinical Biochemistry, 2012, 46, 887–893CrossRefGoogle Scholar
  20. [20]
    Poku E.K., Towler M.R., Cummins N.M., Newman J.D., Developing Novel Prognostic Biomarkers for Multivariate Fracture Risk Prediction Algortihms Calcif Tissue Int 2012,91,204–214Google Scholar
  21. [21]
    Collins G.S., Michaelsson K., Fracture risk assessment: state of the art, methodologically unsound, or poorly reported?, Curr Osteoporos Rep, 2012,10,199–207PubMedCrossRefGoogle Scholar
  22. [22]
    Lippuner K., Johansson H., Borgstrom F., Kanis J.A., Rizzoli R., Cost-effective intervention thresholds against osteoporotic fractures based on FRAX in Switzerland, Osteoporosis Int, 2012, 23, 2579–2589CrossRefGoogle Scholar
  23. [23]
    Compston J., Cooper A., Cooper C., Francis R., Kanis J.A., Marsch D., et al., Guidelines for the diagnosis and management of osteoporosis in postmenopausal women and men from age of 50 years in the UK, Maturitas, 2009, 62(2), 105–108PubMedCrossRefGoogle Scholar
  24. [24]
    Johansson H., Kanis J.A., McCloskey E.V., Oden A., Devogelaer J.-P., Kaufman J.M, et al., A FRAX model for the assessment of fracture probability in Belgium, Osteoporosis Int, 2011, 22, 453–461CrossRefGoogle Scholar
  25. [25]
    Fujiwara S., Nakamura T., Orimo H., Hosoi T., Gorai I., Oden A., et al., Development and application of a Japanese model of the WHO fracture risk assessment tool (FRAX), Osteoporosis Int, 2008, 19, 429–435CrossRefGoogle Scholar
  26. [26]
    Socialstyrelsen, rörelseorganens sjukdomar 2012 Osteoporos, artros, inflammatorisk ryggsjukdom och ankyloserande spondylit, psoriasisartrit och reumatoid artrit Stöd för styrning och ledning. Socialstyrelsen/Iwa Wasberg, 2012Google Scholar
  27. [27]
    Braun J., Pfeilschifter J., Leitliniengerechte Diagnostik und Therapie der Osteoporose 2010, Z Rheumatol, 2010, 69, 327–339PubMedCrossRefGoogle Scholar
  28. [28]
    Lorenc R., G’uszko P., Karczmarewicz E., Księżopolska-Orłowska K., Misiorowski W., Franek E., et al., Recommendations on the diagnosis and treatment of osteoporosis. Reducing the incidence of fractures through effective prevention and treatment., Terapia, 2007, XV,9, 3–51Google Scholar
  29. [29]
    Leslie W.D., Lix L.M., Langsetmo L., Berger C., Goltzman D., Hanley D.A., et al. Construction of a FRAX model for the assessment of fracture probability in Canada and implications for treatment, Osteoporosis Int, 2011,22,817–827CrossRefGoogle Scholar
  30. [30]
    Kanis J.A., Borgstrom F., De Laet C., Johansson H., Johnell O., Jonsson B., et al., Assessment of fracture risk, Osteoporos Int, 2005, 16, 581–589PubMedCrossRefGoogle Scholar
  31. [31]
    Bruyére O., Fossi M., Zegels B., Leonori L., Hilingsmann M. Neuprez A., Reginster J.Y., Comparison of the proportion of patients potentially treated with an anti-osteoporotic drug using the current criteria of the Belgian national social security and the new suggested FRAX criteria, Rheumatol Int, (in press), DOI: 10.1007/s00296-012-2460-yGoogle Scholar
  32. [32]
    Crabtree N.J., Bebbington N.A., Chapman D.M., Wahid Y.S., Ayukt J., Boivin C.M., et al., Impact of UK National Guidelines based on FRAX — comparison with current clinical practice, Clinical Endocrinology, 2010, 73, 452–456PubMedGoogle Scholar
  33. [33]
    Bolland M.J., Grey A., Disparate outcomes from applying U.K. and U.S. osteoporosis treatment guidelines, J Clin Endocrinol Metab, 2010, 95, 1856–1860PubMedCrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Eva Némethová
    • 1
  • Zdenko Killinger
    • 1
  • Juraj Payer
    • 1
  1. 1.5th Department of Internal MedicineFaculty of Medicine Comenius University and University Hospital RužinovBratislavaSlovakia

Personalised recommendations