Central European Journal of Medicine

, Volume 8, Issue 6, pp 776–789 | Cite as

Using fractal dimension to evaluate alveolar bone defects treated with various bone substitute materials

  • Marcin Kozakiewicz
  • Sławomir Chaberek
  • Katarzyna Bogusiak
Research Article
  • 79 Downloads

Abstract

Introduction

This study analyzed how different implanted materials affected the healing of alveolar defects using fractal dimension (FD) computation taken from radiographs.

Methods

236 patients with bone defects in the upper/lower jaw were selected to this study and treated with: algae derived hydroxyapatite (AHA), bovine bone mineral (BBM), beta-tricalcium phosphate (TCP), synthetic hydroxyapatite (SHA), biological active glass (BAG), autogenous bone grafts (ABG), reference group (REF) — intact bone. 22 patients with bone defects where the bone substitute was not introduced made NON group. The results were monitored using intraoral x-ray imaging.

Results

FD varied with the different biomaterials throughout the time of observation and reflected individual character of bone remodeling. Fractal analysis of intact and augmented bone during observation showed higher FD for the intact bone in comparison with the biomaterials site.

Conclusions

Fractal techniques can be a descriptor of bone substitutes. On the basis of the differences in the dynamics of alteration between different bone substitute materials we can distinguish two groups of them. Visible changes in the structure emerge earlier in places of implantation of BBM and TCP in comparison to the group of biomaterials constituting more stable patterns of radiotexture: AHA, BAG, SHA.

Keywords

Biocompatible Materials Bone Resorption Bone Substitutes Fractal analysis Image Processing Mandible Maxillary Sinus Subtraction Technique 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Shrout MK, Potter BJ, Hildebolt CF. The effect of image variation on fractal dimension calculations. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1997; 84: 96–100PubMedCrossRefGoogle Scholar
  2. [2]
    Tatum H. Maxillary and sinus implant reconstructions. Den Clin North Am 1986; 30: 207–229Google Scholar
  3. [3]
    Pappalardo S, Puzzo S, Carlino V, Cappello V. Bone substitutes in oral surgery. Minerva Stomatol 2007; 56: 541–557PubMedGoogle Scholar
  4. [4]
    Boyne PJ, James RA. Grafting of the maxillary sinus with autogenous marrow and bone. J Oral Surg 1980; 38: 613–616PubMedGoogle Scholar
  5. [5]
    Wood RM, Moore DL. Grafting of the maxillary sinus with intraorally harvested autogenous bone prior to implant placement. Int J Oral and Maxillofac Implants 1988; 3: 209–214Google Scholar
  6. [6]
    Harris WH, White RE, McCarthy JC, Walker PS, Weinberg EH. Bony ingrowth fixation of acetabular component in canine hip joint arthroplastry. Clin Orthop Retal Res 1983; 176: 7–11Google Scholar
  7. [7]
    Hulbert SF, Young FA, Mathews RS, Klawitter JJ, Talbert CD, Stelling FH. Potential of ceramic materials as permanently implantable skeletal prostheses. J Biomed Mater Res 1970; 4: 433–456PubMedCrossRefGoogle Scholar
  8. [8]
    Kozakiewicz M, Hanclik M, Arkuszewski P, et al. Bone augumentation with Bio-OSS. 18 month assessment utilizing radiological subtraction. Zeitschrift Zahnarztlich Implantologie 2001, suppl, S14Google Scholar
  9. [9]
    Holinger J O, Brekke J, Gruskin E, Lee D. Role of bone substitutes. Clin Orthop Relat Res 1996; 324: 55–65CrossRefGoogle Scholar
  10. [10]
    Taylor JC, Cuff SE, Leger JP, Morra A, Anderson GI. In vitro osteoclast resorption of bone substitute biomaterials used for implant site augumentation: a pilot study. Int J Oral Maxillofac Implants 2002; 17: 321–330PubMedGoogle Scholar
  11. [11]
    Wheeler DL, Stokes KE, Hoelrich RG, Chamberland DL, McLoughlin SW. Effect of bioactive glass participle size on osseous regeneration of cancellous defects. J Biomed Mater Res 1998; 41: 527–533PubMedCrossRefGoogle Scholar
  12. [12]
    Lovelace TB, Mellonig JT, Meffert RM, Jones AA, Nummikoski PV, Cochran DL. Clinical evaluation of bioactive glass in the treatment of periodontal osseus defects in humans. J Periodontol 1998; 69: 1027–1035PubMedCrossRefGoogle Scholar
  13. [13]
    Zins JE, Whitaker LA. Membranous versus endochondral bone: implications for craniofacial reconstruction. Plast Reconstr Surg 1983; 72: 778–785PubMedCrossRefGoogle Scholar
  14. [14]
    Sailer HF, Weber FE. Bone substitutes. Mund Kiefer Gesichtschir 2000; 4: 384–391CrossRefGoogle Scholar
  15. [15]
    Moy PK, Lundgren S, Holmes RE. Maxillary sinus augmentation: histomorphometric analysis of graft materials for maxillary sinus floor augmentation. J Oral Maxillofac Surg 1993; 51: 857–862PubMedCrossRefGoogle Scholar
  16. [16]
    Tadjoedin ES, de Lange GL, Holzmann PJ, Kulper L, Burger EH. Histological observations on biopsies harvested following sinus floor elevation using a bioactive glass material of narrow size range. Clin Oral Implants Res 2000; 11: 334–344PubMedCrossRefGoogle Scholar
  17. [17]
    Aygit AC, Sarikaya A, Candan L, Ayhan MS, Cermik TF. Comparison of alloplastic implants for facial bones by scintigraphy and histology: an experimental study. Eur J Plast Surg 1999; 22: 102–106CrossRefGoogle Scholar
  18. [18]
    Hanisch O, Lozada JL, Holmes RE, Calhoun CJ, Kan JY, Spiekermann H. Maxillary sinus augmentation prior to placement of endosseous implants: a histomorphometric analysis. Int J Oral Maxillofac Implants 1999; 14: 329–336.PubMedGoogle Scholar
  19. [19]
    Yildirim M, Spiekermann H, Biesterfeld S, Edelhoff D. Maxillary sinus augmentation using xenogenic bone substitute material Bio-Oss in combination with venous blood. A histologic and histomorphometric study in humans. Clin Oral Implants Res 2000; 11: 217–229PubMedCrossRefGoogle Scholar
  20. [20]
    Jensen T, Schou S, Svendsen PA, Forman JL, Gundersen HJ, Terheyden H, Holmstrup P: Volumetric changes of the graft after maxillary sinus floor augmentation with Bio-Oss and autogenous bone in different ratios: a radiographic study in minipigs. Clin Oral Implants Res. 2012; 23(8): 902–910PubMedCrossRefGoogle Scholar
  21. [21]
    Jensen T, Schou S, Stavropoulos A, Terheyden H, Holmstrup P. Maxillary sinus floor augmentation with Bio-Oss or Bio-Oss mixed with autogenous bone as graft in animals: a systematic review. Int J Oral Maxillofac Surg 2012; 41: 114–120PubMedCrossRefGoogle Scholar
  22. [22]
    McAllister BS, Margolin MD, Cogan AG, Buck D, Hollinger JO, Lynch SE. Eighteen-month radiographic and histologic evaluation of sinus grafting with anorganic bovine bone in the chimpanzee. Int J Oral Maxillofac Implants 1999; 14: 361–368.PubMedGoogle Scholar
  23. [23]
    Liu YL, Schoenaers J, De Groot K, de Wijn JR, Schepers E. Bone healing in porous implants: a histological and histometrical comparative study on sheep. J Mater Sci Mater Med 2000; 11: 711–717PubMedCrossRefGoogle Scholar
  24. [24]
    Haas R, Baron M, Donath K, Zechner W, Watzek G. Porous hydroxyapatite for grafting the maxillary sinus: a comparative histomorphometric study in sheep. Int J Oral Maxillofac Implants 2002; 17: 337–346PubMedGoogle Scholar
  25. [25]
    Suba Z, Takács D, Gyulai-Gaál Sz, Kovács K. Facilitation of beta-tricalcium phosphate-induced alveolar bone regeneration by platelet-rich plasma in beagle dogs. A histologic and histomorphometric study. Int J Oral Maxillofac Implants 2004; 19: 832–838PubMedGoogle Scholar
  26. [26]
    Almasri M, Altalibi M. Efficacy of reconstruction of alveolar bone using an alloplastic hydroxyapatite tricalcium phosphate graft under biodegradable chambers. Br J Oral Maxillofac Surg 2011; 49: 469–473PubMedCrossRefGoogle Scholar
  27. [27]
    Anselme K, Noel B, Flautre B, Blary MC, Delecourt C, Descamps M. Association of porous hydroxyapatite and bone marrow cells for bone regeneration. Bone 1999; 25: 51–54CrossRefGoogle Scholar
  28. [28]
    Laurencin CT, Attawia MA, Elgendy HE, Herbert KM. Tissue engineered bone regeneration using degradable polymers: the formation of mineralized matrices. Bone 1996; 19: 93–99CrossRefGoogle Scholar
  29. [29]
    Bassil J, Naaman N, Lattouf R, Kassis C, Changotade S, Baroukh B, Senni K, Godeau G: Clinical, histological, and histomorphometrical analysis of maxillary sinus augmentation using inorganic bovine in humans: preliminary results. J Oral Implantol. 2013; 39(1): 73–80PubMedCrossRefGoogle Scholar
  30. [30]
    Isenberg G, Goldman HM, Spira J, Parsons FG, Street PN. Radiography analysis by two-dimensional microdensitometry. J Am Dent Assoc 1968; 77: 1069–1073PubMedGoogle Scholar
  31. [31]
    Ort MG, Gregg EC, Kaufman B. Subtraction radiography: techniques and limitations. Radiology 1977; 124: 65–72PubMedGoogle Scholar
  32. [32]
    Ruttimann UE, Ship JA. The use of fractal geometry to quantitate bone structure from radiographs. J Dent Res 1990; 69: 287 (Abstr 1431)Google Scholar
  33. [33]
    Yasar F, Akgunlu F. The differences in panoramic mandibular indices and fractal dimension between patients with and without spinal osteoporosis. Dentomaxillofac Radiol 2006; 35: 1–9PubMedCrossRefGoogle Scholar
  34. [34]
    Chen J, Zheng B, Chang YH, Shaw CC, Towers JD, Gur D. Fractal analysis of trabecular patterns in projection radiographs. An assessment. Invest Radiol 1994; 29: 624–629PubMedCrossRefGoogle Scholar
  35. [35]
    Ruttimann UE, Webber RL, Hazelrig JB. Fractal dimension from radiographs of peridental alveolar bone. Oral Surg Oral Med Oral Pathol 1992; 74: 98–110PubMedCrossRefGoogle Scholar
  36. [36]
    Law AN, Bollen AM, Chen SK. Detecting osteoporosis using dental radiographs: a comparison of four methods. J Am Dent Assoc 1996; 127: 1734–1742PubMedGoogle Scholar
  37. [37]
    Samarabandu J, Acharya R, Hausmann E, Allen K. Analysis of bone X-rays using morphological fractals. IEEE Trans Med Imaging 1993; 12: 466–470PubMedCrossRefGoogle Scholar
  38. [38]
    Geraets WGM, van der Stelt PF. Fractal properties of bone. Dentomaxillofac Radiol 2000; 29: 144–153PubMedCrossRefGoogle Scholar
  39. [39]
    Webber RL, Hazelrig JB, Patel JR, Van den Berg HR, Lemons. JE. Evaluation of site-specific differences in trabecular bone using fractal geometry. J Dent Res 1991; 70: 528 (Abstr 2095)Google Scholar
  40. [40]
    Shrout MK, Potter BJ, Hildebolt CF. The effect of image variations on fractal dimension calculations. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1997; 84: 96–100PubMedCrossRefGoogle Scholar
  41. [41]
    Jolley L, Majumdar S, Kapila S. Technical factors in fractal analysis of periapical radiographs. Dentomaxillofac Radiol 2006; 35: 393–397PubMedCrossRefGoogle Scholar
  42. [42]
    Shrout MK, Roberson B, Potter BJ, Mailhot JM, Hildebolt CF. A comparison of 2 patient populations using fractal analysis. J Periodontal 1998; 69: 9–13CrossRefGoogle Scholar
  43. [43]
    Wilding RJ, Slabbert JC, Kathree H, Owen CP, Crombie K, Delport P. The use of fractal analysis to reveal remodelling in human alveolar bone following the placement of dental implants. Arch Oral Biol 1995; 40: 61–72PubMedCrossRefGoogle Scholar
  44. [44]
    Veenland JF, Grashius JL, van der Meer F, Beckers AL, Gelsema ES. Estimation of fractal dimension in radiographs. Med Phys 1996; 23:585–594PubMedCrossRefGoogle Scholar
  45. [45]
    Caligiuri P, Giger ML, Favus M. Multifractal radiographic analysis of osteoporosis. Med Phis 1994; 21: 503–508CrossRefGoogle Scholar
  46. [46]
    Cargill EB, Barrett HH, Fiete RD, Ker M, Patton D, Sweeley GW. Fractal physiology and nuclear medicine scans. SPIE Conference on Medical Imaging II 1988; 355–362CrossRefGoogle Scholar
  47. [47]
    Kozakiewicz M, Bogusiak K, Hanclik M, Denkowski M, Arkuszewski P. Noise In subtraction images made from pairs of intraoral radiographs: a comparison between four methods of geometric alignment. Dentomaxillofac Radiol 2008; 37:40–46PubMedCrossRefGoogle Scholar
  48. [48]
    Chan KL. Quantitative characterization of electron micrograph image using fractal feature. IEEE Trans Biomed Eng 1995; 42: 1033–1037PubMedCrossRefGoogle Scholar
  49. [49]
    Wojtowicz A, Chaberek S, Urbanowska E, Ostrowski K. Comparison of efficiency of platelet rich plasma, hematopoieic stem cells and bone marrow in augmentation of mandibular bone defects. N Y State Dent J 2007; 73: 41–45PubMedGoogle Scholar
  50. [50]
    Berry JL, Towers JD, Webber RL, Pope TL, Davidai G, Zimmerman M. Change in trabecular architectures measured by fractal dimension. J Biomech 1996; 29: 819–822PubMedCrossRefGoogle Scholar
  51. [51]
    Le Corroller T, Halgrin J, Pithioux M, Guenoun D, Chabrand P, Champsaur P. Combination of texture analysis and bone mineral density improves the prediction of fracture load in human femurs. Osteoporos Int 2012; 23: 163–169PubMedCrossRefGoogle Scholar
  52. [52]
    Veltri M, Ferrari M, Balleri P. Correlation of radiographic fractal analysis with implant insertion torque in a rabbit trabecular bone model. Int J Oral Maxillofac Implants 2011; 26: 108–114PubMedGoogle Scholar
  53. [53]
    Koyama A, Kumasaka S, Kashima I. Relationship between bone mineral density and 2D and 3D structural parameters of bone trabeculae. Oral Radiology 2005; 21: 62–68CrossRefGoogle Scholar
  54. [54]
    Meagher PJ, Morrison WA. Free fibula flap-donorsite morbidity: case report and review of the literature. J Reconstr Microsurg 2002; 18: 465–468PubMedCrossRefGoogle Scholar
  55. [55]
    Tsuji RK, Jorgetti V, Bento RF, Brito Neto RV. Use of Alpha-tricalcium Phosphate Bone Cement in the Surgical Treatment of Mastoid Cavity. Int Arch Otorhinolaryngol 2008; 12: 397–405Google Scholar
  56. [56]
    Sang H, Wang Z, Guo Z, Wang L, Li J, Meng G, et al. Clinical results and the mechanism of bone healing for the repair of bone defects due to tumor resection with novel interporous TCP. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2008; 22: 463–467 (Abstract)PubMedGoogle Scholar
  57. [57]
    Marx RE. Bone and bone graft healing. Oral Maxillofac Surg Clin North Am 2007; 19: 455–466PubMedCrossRefGoogle Scholar
  58. [58]
    Mamun S, Akhter M, Molla MR. Bone Grafts in Jaw Cysts-Hydroxyapatite & Allogenic Bone — A Comparative Study. BSMMU J 2009; 2: 34–39Google Scholar
  59. [59]
    Zaffe D, Leghissa GC, Pradelli J, Botticelli AR. Histological study on sinus lift grafting by Fisiograft and Bio-Oss. J Mater Sci Mater Med 2005; 16: 789–793PubMedCrossRefGoogle Scholar
  60. [60]
    De Boever AL, De Boever JA. Guided bone regeneration around non-submerged implants in narrow alveolar ridges: a prospective long-term clinical study. Clin Oral Implants Res 2005; 16: 549–556PubMedCrossRefGoogle Scholar
  61. [61]
    Wiltfang J, Schlegel KA, Schultze-Mosgau S, Nkenke E. Sinus floor augmentation with beta-tricalcium phosphate (beta-TCP): does platelet-rich plasma promote its osseous integration and degradation? Clin Oral Implants Res 2003; 14: 213–218PubMedCrossRefGoogle Scholar
  62. [62]
    Tamimi FM, Torres J, Tresguerres I, Clemente C, López-Cabarcos E, Blanco LJ. Bone augmentation in rabbit calvariae: comparative study between Bio-Oss and a novel β-TCP/DCPD granulate. J Clin Periodontol 2006; 33: 922–928PubMedCrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marcin Kozakiewicz
    • 1
  • Sławomir Chaberek
    • 2
  • Katarzyna Bogusiak
    • 3
  1. 1.Department of Maxillofacial SurgeryMedical University of LodzLodzPoland
  2. 2.Independent Clinical HospitalOtwockPoland
  3. 3.Department of Craniomaxillofacial and Oncological SurgeryMedical University of LodzLodzPoland

Personalised recommendations