Central European Journal of Medicine

, Volume 9, Issue 1, pp 64–73 | Cite as

Beneficial neurohumoral profile in left ventricular systolic dysfunction following acute myocardial infarction

  • Giedrė Balčiūnaitė
  • Alfredas Rudys
  • Nelli Bičkauskaitė
  • Diana Zakarkaitė
  • Viktor Skorniakov
  • Jelena Čelutkienė
  • Aleksandras Laucevičius
Research Article



The goal of our study was to determine the effects of combined renin-angiotensin-aldosterone system (RAAS) blocking therapy, including a selective aldosterone inhibitor eplerenone, on neurohumoral profile in patients with left ventricular (LV) systolic dysfunction following an acute myocardial infarction (MI). We also assessed the effect of multiple neuroendocrine inhibitors therapy on renal function and explored the interaction between changes in renal function and heart failure markers.


Our study incorporated 74 patients aged between 39 and 86 (mean 64.5 +/- 11.4) with established acute MI and reduced left ventricular ejection fraction (EF ≤ 40%). The additive effect of eplerenone (25–50 mg/d) on top of the standard heart failure regimen on plasma concentrations of N-terminal pro-brain natriuretic peptide (NT-proBNP), renin and aldosterone were assessed at study entry and at six months. Renal function was determined by creatinine and estimated glomerular filtration rate (eGFR), calculated using the Cockcroft-Gault formula. The changes in LV volumes and systolic function were assessed by a transthoracic echocardiography at baseline and at the end of follow-up.


Following 6 months of combined RAAS blocking therapy, incorporating aldosterone inhibitor eplerenone, plasma levels of NT-proBNP (−77.7%, p= 0.001) and renin (−52.2%, p= 0.083) decreased. As expected, an increase in aldosterone levels was observed (+36.8%, p= 0.758). A mild decline in eGFR (−2,0 ml/min, p= 0.028) was observed, with potassium levels increasing slightly, but remaining within the normal range (4.28 vs. 4.48 mmol/L, p= 0.028). We found that baseline creatinine correlated with measures characterising myocardial function (NT-proBNP, LVEF). The highest correlation was with NT-proBNP at baseline (r = 0.537, p <0.001). Logistic regression models for prediction of significant left ventricular ejection fraction improvement (LVEF after 6 months-LVEF at baseline ≥5%) did not demonstrate that renal function measurements are suitable for this purpose.


A combined heart failure regimen, including aldosterone inhibitor eplerenone, in patients with left ventricular systolic dysfunction following acute MI decreases circulating levels of natriuretic peptides and renin and increases levels of aldosterone. The reduction in NT-proBNP is related to improvement of left ventricular systolic function and possibly to improved LV compliance and reduction of LV-filling pressures, whereas the increase in aldosterone levels could reflect activated feedback mechanisms of RAAS. A mild reduction in eGFR can be expected in the course of HF therapy in post-MI patients with normal baseline renal function. A severe hyperkalemia can be prevented by close monitoring of renal function and potassium levels. Our findings suggest, that there is a direct linear relationship between renal function and markers of myocardial function early post-MI, which is no longer present after six months. Cardio-renal correlation is best reflected by raw values of creatinine.


Heart failure Left ventricular systolic dysfunction Renin-angiotensin-aldosterone system NT-proBNP Eplerenone 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Omland T., Aakvaag A., Bonarjee V.S., et al. Plasma brain natriuretic peptide as an indicator of left ventricular systolic function and long-term survival after acute myocardial infarction: comparison with plasma atrial natriuretic peptide and N-terminal proatrial natriuretic peptide. Circulation 1996;93:1963–1969PubMedCrossRefGoogle Scholar
  2. [2]
    Struthers A.D. Aldosterone escape during angiotensin-converting enzyme inhibitor therapy in chronic heart failure. J Card Fail 1996;2:47–54PubMedCrossRefGoogle Scholar
  3. [3]
    Pitt B., Zannad F., Remme W.J., et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med. 1999; 341(10):709–717PubMedCrossRefGoogle Scholar
  4. [4]
    Rousseau M.F., Gurne O., Duprez D., Mieghem W., Robert A., Ahn S., Galanti.L, Ketelslegers J.M. Beneficial neurohormonal profile of spironolactone in severe congestive heart failure. J Am Coll Cardiol 2002; Vol 40Google Scholar
  5. [5]
    Delyani, J.A., 2000. Mineralocorticoid receptor antagonists: the evolution of utility and pharmacology. Kidney Int. 57, 1408–1411PubMedCrossRefGoogle Scholar
  6. [6]
    Pitt B., Remme W., Zannad F., et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 2003;348(14):1309–1321. [Ephesus]PubMedCrossRefGoogle Scholar
  7. [7]
    Zannad F., McMurray J.J.V., Drexler H., Krum H., Van Veldhusein J.D., Swedberg K., Shi H., Vincent J., Pitt B. Rationale and design of the Eplerenone in mild patients hospitalization and survival study in heart failure (Emphasis-HF). Eur J Heart Fail 2010; 12(6): 617–622PubMedCrossRefGoogle Scholar
  8. [8]
    ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. McMurray JJ., Adamopoulos S., Anker SD, Auricchio A., Böhm M., Dickstein K., Falk V., Filippatos G., Fonseca C., ESC Committee for Practice Guidelines. Eur J Heart Fail. 2012 Aug;14(8):803–869PubMedCrossRefGoogle Scholar
  9. [9]
    Forman D.E., Butler J., Wang Y., Abraham W.T., O’Connor C.M. Incidence, predictors at admission, and impact of worsening renal function among patients hospitalized with heart failure. J Am Coll Cardiol 2004; 43: 61–67PubMedCrossRefGoogle Scholar
  10. [10]
    Jose P., Skali H., Anavekar N., Tomson C., Krumholz H.M., Rouleau J.L., Moye L., Pfeffer M.A., Solomon S.D. Increase in creatinine and cardiovascular risk in patients with systolic dysfunction after myocardial infarction. J Am Soc Nephrol. 2006;17:2886–2891PubMedCrossRefGoogle Scholar
  11. [11]
    Anavekar N.S., McMurray J.J., Velazquez E.J., Solomon S.D., Kober L., Rouleau JL, White HD, Nordlander R, Maggioni A, Dickstein K, Zelenkofske S, Leimberger JD, Califf RM, Pfeffer MA. Relation between renal dysfunction and cardiovascular outcomes after myocardial infarction. N Engl J Med. 2004;351:1285–1295PubMedCrossRefGoogle Scholar
  12. [12]
    Anand I.S., Bishu K., Rector T.S., Ishani A., Kuskowski M.A., Cohn J.N. Proteinuria, chronic kidney disease, and the effect of an angiotensin receptor blocker in addition to an angiotensinconverting enzyme inhibitor in patients with moderate to severe heart failure. Circulation. 2009; 120:1577–1584PubMedCrossRefGoogle Scholar
  13. [13]
    Francis G.S., Tang W.H. Pathophysiology of congestive heart failure. Rev Cardiovasc Med. 2003;4(Suppl 2):S14–S20PubMedGoogle Scholar
  14. [14]
    Weber K.T. Aldosterone in congestive heart failure. N Engl J Med. 2001;345(23):1689–1697PubMedCrossRefGoogle Scholar
  15. [15]
    Gradman A.H. Evolving understanding of the renin-angiotensin-aldosterone system: pathophysiology and targets for therapeutic intervention. Am Heart J 2009;157:S1–6PubMedCrossRefGoogle Scholar
  16. [16]
    Rouleau J.L., Packer M., Moye L., et al. Prognostic value of neurohumoral activation in patients with an acute myocardial infarction: effect of captopril. J Am Coll Cardiol 1994;24:583–591PubMedCrossRefGoogle Scholar
  17. [17]
    Hall C., Rouleau J.L., Moye L., et al. N-terminal proatrial natriuretic factor: an independent predictor of long-term prognosis after myocardial infarction. Circulation 1994;89:1934–42PubMedCrossRefGoogle Scholar
  18. [18]
    Levin E.R., Gardner D.G., Samson W.K. Natriuretic peptides. N Engl J Med 1998;339:321–328PubMedCrossRefGoogle Scholar
  19. [19]
    Tsutamato T., Wada A., Maeda K., et al. Effect of spironolactone on plasma brain natriuretic peptide and left ventricular remodeling in patients with congestive heart failure. J Am Coll Cardiol 2001;37:1228–1233CrossRefGoogle Scholar
  20. [20]
    Struthers A.D., MacDonald T.M. Review of aldosterone- and angiotensin II-induced target organ damage and prevention. Cardiovasc Res 2004; 61:663–670PubMedCrossRefGoogle Scholar
  21. [21]
    Edelmann.F, Schmidt A.G., Gelbrich G., et al. Rationale and design of the “aldosterone receptor blockade in diastolic heart failure” trial: a doubleblind, randomized, placebo-controlled, parallel group study to determine the effects of spironolactone on exercise capacity and diastolic function in patients with symptomatic diastolic heart failure (Aldo-DHF). Eur J Heart Fail 2010; 12:874–882.PubMedCrossRefGoogle Scholar
  22. [22]
    Weber K.T., Brilla C.G.. Pathological hypertrophy and cardiac interstitium: fibrosis and reninangiotensin-aldosterone system. Circulation 1991;83:1849–1865PubMedCrossRefGoogle Scholar
  23. [23]
    Silvestre J.S., Heymes C., Oubenaissa A., Robert V., Aupetit-Faisant B., Carayon A., Swynghedauw B., Delcayre C. Activation of cardiac aldosterone production in rat myocardial infarction: effect of angiotensin II receptor blockade and role in cardiac fibrosis. Circulation 1999; 99: 2694–2701PubMedCrossRefGoogle Scholar
  24. [24]
    MacFadyen R.J., Lee A.F., Morton J.J., Pringle S.D., Struthers A.D. How often are angiotensin II and aldosterone concentrations raised during chronic ACE inhibitor treatment in cardiac failure? Heart 1999; 82:57–61PubMedGoogle Scholar
  25. [25]
    Struthers A.D. The clinical implications of aldosterone escape in congestive heart failure. Eur J heart Fail 2004; 6: 539–545PubMedCrossRefGoogle Scholar
  26. [26]
    Tang W.H., Vagelos R.H., Yee Y.G., et al. Neurohormonal and clinical responses to highversus low-dose enalapril therapy in chronic heart failure. J Am Coll Cardiol 2002; 39:70–78PubMedCrossRefGoogle Scholar
  27. [27]
    Vantrimpton P., Rouleau J.L., Ciampi A., Harel F., De Champlaint J., Bichet D., Moye JA. Two-year time course and significance of neurohumoral activation in the Survival and Ventricular enlargement (SAVE) study. Eur Heart J 1998; 19: 1552–1563CrossRefGoogle Scholar
  28. [28]
    Shirani J., Dilsizian V. Imaging left ventricular remodeling: targeting the neurohumoral axis. Nat Clin Pract Cardiovasc Med 2008;5 Suppl 2:S57–62CrossRefGoogle Scholar
  29. [29]
    Yancy C.W., Lee D.C. Personalized medicine in heart failure: are we there yet? J Am Coll Cardio Img 2012;5:419–421CrossRefGoogle Scholar
  30. [30]
    Bayliss J, Norell M, Canepa-Anson R, Sutton G, Poole-Wilson P. Untreated heart failure: clinical and neuroendocrine effects of introducing diuretics. Br Heart J 1987;57:17–22PubMedCentralPubMedCrossRefGoogle Scholar
  31. [31]
    Hillege H.L., Girbes A.R., de Kam P.J., Boomsma F., de Zeeuw D., Charlesworth A., Hampton J.R., van Veldhuisen D.J. Renal function, neurohormonal activation, and survival in patients with chronic heart failure. Circulation. 2000;102:203–210.PubMedCrossRefGoogle Scholar
  32. [32]
    Rossignol P., Cleland J.G., Bhandari S., Tala S., Gustafsson F., Fay R., Lamiral Z., Dobre D., Pitt B., Zannad F. Determinants and Consequences of Renal Function Variations With Aldosterone Blocker Therapy in Heart Failure Patients After Myocardial Infarction Insights From the Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study Circulation. 2012 Jan 17;125(2):271–279. Epub 2011 Nov 29.Google Scholar
  33. [33]
    Gupta S., Neyses L. Diuretic usage in heart failure: a continuing conundrum in 2005. Eur Heart J. 2005;26:644–6CrossRefGoogle Scholar
  34. [34]
    Ahmed A., Zannad F., Love T.E., et al. A propensity- matched study of the associationof low serum potassium levels and mortality in chronic heart failure. Eur Heart J 2007;28:1334–1343PubMedCentralPubMedCrossRefGoogle Scholar
  35. [35]
    Brown J.R., Uber P.A., Mehra M.R. The progressive cardiorenal syndrome in heart failure: mechanism and therapeutic insights. Curr Treat Options Cardiovasc Med 2008; 10: 342–348PubMedCrossRefGoogle Scholar
  36. [36]
    Weinfeld M.S., Chertow G.M., Stevenson L.W. Aggravated renal dysfunction during intensive therapy for advanced chronic heart failure. Am Heart J. 1999; 138: 285–290PubMedCrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Giedrė Balčiūnaitė
    • 1
  • Alfredas Rudys
    • 1
    • 3
  • Nelli Bičkauskaitė
    • 1
  • Diana Zakarkaitė
    • 1
  • Viktor Skorniakov
    • 2
  • Jelena Čelutkienė
    • 3
  • Aleksandras Laucevičius
    • 1
    • 3
  1. 1.Centre of Cardiology and AngiologyVilnius University Hospital Santariskiu KlinikosVilniusLithuania
  2. 2.Vilnius University Faculty of MathematicsVilniusLithuania
  3. 3.Clinic of Cardiovascular diseaseVilnius University Medical FacultyVilniusLithuania

Personalised recommendations