Advertisement

Central European Journal of Medicine

, Volume 8, Issue 3, pp 354–357 | Cite as

Urine saturation and promoter/inhibitor parameters and ratios in renal stone disease caused by ceftriaxone

  • Danko Milošević
  • Branko Miše
  • Ivan Habuš
  • Marija Topalović-Grković
  • Danica Batinić
  • Anja Tea Golubić
  • Daniel Turudić
Case Report
  • 99 Downloads

Abstract

During ceftriaxone treatment of subdural empyema caused by Streptococcus intermedius urinary and biliary stones were noticed. Increased levels of urinary calcium excretion were detected during ongoing treatment in comparison with 2 months check-up. There were no significant changes in the promoter/inhibitor urolithiasis parameters, oxalate, citrate, urate, cistine, glycosaminoglycans or their ratios. Urine saturation was calculated using EQUIL 2 computer programme (calcium oxalate, brushite) and it was normal. Probable trigger for the ceftriaxone/calcium hydroxy carbonate phosphate mixture of stones was a critical boost of solubility products caused by ceftriaxone treatment and phospnate urine content with a subsequent large-scale spontaneous precipitation of crystals.

Keywords

Ceftriaxone Urolythiasis Urine saturation Stone promoters/inhibitors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Schaad UB., Wedgwood-Krucko J., Tschaeppler H. Reversible ceftriaxone-associated biliary pseudolithiasis in children. Lancet, 1988, 8625, 1411–1413CrossRefGoogle Scholar
  2. [2]
    de Moor RA., Egberts AC., Schröder CH. Ceftriaxone associated nephrolythiasis and biliary pseudolithiasis. EUR J Pediatr, 1999, 158, 975–977PubMedCrossRefGoogle Scholar
  3. [3]
    Bor O., Dinleyici EC., Kebapci M., Aydogdu SD. Ceftriaxone-associated biliary sludge and pseudocholelithiasis during childhood: a prospective study. Pediatr Int, 2004, 46, 322–324PubMedCrossRefGoogle Scholar
  4. [4]
    Acun C., Erdem LO., Söğüt A., Erdem CZ., Tomaç N., Gündoğdu S., et al. Gallbladder and urinary tract precipitations associated with ceftriaxone therapy in children: a prospective study., Ann Trop Pediatr, 2004, 24, 25–31CrossRefGoogle Scholar
  5. [5]
    Gargollo PC., Barnewolt CE., Diamond DA. Pediatric ceftriaxone nephrolythiasis. J Urol, 2005, 173, 577–578PubMedCrossRefGoogle Scholar
  6. [6]
    Mohkam M., Karimi A., Gharib A., Daneshmand H., Khatami A., Ghojevand N., et al. Ceftriaxone associated nephrolythiasis: a prospective study in 284 children. Pediatr nephrol, 2007, 22, 690–694PubMedCrossRefGoogle Scholar
  7. [7]
    Avci Z., Koktener A., Uras N., Catal F., Karadag A., Tekin O., et al. Nephrolythiasis associated with ceftriaxone therapy: a prospective study in 51 children. Arch Dis Child, 2004, 89, 1069–1072PubMedCrossRefGoogle Scholar
  8. [8]
    Karlizcek SB., Döring S., Vogt S., et al.Ceftriaxone-associated nephrolythiais. Two case reports. Monatsschr Kinderheilkd, 1996, 144, 702–706Google Scholar
  9. [9]
    Kimata T., Kaneko K., Takahashi M., Hirabayashi M., Shimo T., Kino M. Increased urinary calcium excretion caused by ceftriaxone: possible association with urolythiasis. Pediatr nephrol, 2012, 27, 605–609PubMedCrossRefGoogle Scholar
  10. [10]
    Lozanovski VJ., Gucev Z., Avramoski VJ., Kirovski I., Makreski P., Tasic V. Ceftriaxone associated urolithisis in a child with hypercalciuria. Hippokratia, 2011, Apr–Jun 15(2),181–183PubMedGoogle Scholar
  11. [11]
    Milošević D., Batinić D. Blau N., Konjevoda P., Štambuk N., Votava-Raić A., et al.Determination of urine saturation with computer program Equil 2 as a method for estimation of the risk of urolithiasis. J Chem Inf Comput Sci, 1998, 38(4), 646–650PubMedCrossRefGoogle Scholar
  12. [12]
    Batinić D., Milošević D., Blau N., Konjevoda P., Štambuk N., Barbarić V., et al. of the stone promoters/inhibitors ratios in the estimation of the risk of urolithiasis. J Chem Comput Sci, 2000, 40(3), 607–610Google Scholar
  13. [13]
    Werness P., Brown CM., Smith LH., Finlayson B., EQUIL II: a BASIC computer program for the calculation of urinary saturation. J Urol, 1985, 134, 1242–1244PubMedGoogle Scholar
  14. [14]
    Witten IH., Frank E. Data mining:practical machine learning tools and techniques with Java implementations. Morgan Kaufman: San Francisco, 2000.Google Scholar
  15. [15]
    Milošević D., Batinić D., Konjevoda P., Blau N., Štambuk N., Nižić L.j, et al. of calcium, oxalate, and citrate interaction in idiopathic calcium urolithiasis in children. J Chem Inf Comput Sci, 2003, 43(6), 1844–1847PubMedCrossRefGoogle Scholar
  16. [16]
    Chutipongtanate S. and Thongboonkerd V. Ceftriaxone crystallization and it potential role in kidney stone formation. Biochem Biophys Res Commun., 2011 Mar, 406(3), 396–402PubMedCrossRefGoogle Scholar
  17. [17]
    Reid DG., Jackson GJ., Duer MJ., Rodgers AL. Apatite in kidney stones is a molecular composite with glycosaminogycans and proteins: evidence from nuclear magnetic resonance spectroscopy, and relevance to Randall’s plaque, pathogenesis and prophylaxis. J Urol, 2011 Feb, 185(2), 725–730PubMedCrossRefGoogle Scholar
  18. [18]
    Hesse A. and Heimbach D. Causes of phosphate stone formation and the importance of metaphylaxis by urinary acidification: a review. World J Urol, 1999 Oct, 17(5), 308–315PubMedCrossRefGoogle Scholar
  19. [19]
    Battino BS., DeFOOR W., Coe F., Tackett L., Erhard M., Wacksman J., Sheldon CA., Minevich E. Metabolic evaluation of children with urolithiasis: arer adult references for supersaturation appropriate?. J Urol, 2002 Dec, 168(6), 2568–2571PubMedCrossRefGoogle Scholar
  20. [20]
    Patzer L., van’t Hoff W., Shah V., Halson P., Kasidas GP., Colin S., de Bruyn R., Baratt TM., Dillon MJ. Urinary supersaturation of calcium oxalate and phosphate in patients with X-linked hypophosphatemic rickets and in healthy school children. J Pediatr, 1999 Nov, 135(5), 611–617PubMedCrossRefGoogle Scholar
  21. [21]
    Shiffman M., Keith FB., Moore EW. Pathogenesis of seftriaxone-associated biliary sludge. In vitro studies of calcium-ceftriaxone binding and solubility. Gastroenterology, 1990 Dec, 99(6), 1772–1776PubMedGoogle Scholar
  22. [22]
    Malsy A. and Bohner M. Brushite conversion into apatite. European Cells and Minerals Vol, 10. Suppl. 1, 2005, (page 28)Google Scholar
  23. [23]
    Asplin J., Parks J., Lingeman J., Kahnoski R., Mardis H., Lacey S., Goldfarb D., Grasso M., Coe F. Supersaturation and stone composition in a network of dispersed treatment sites. J Urol, 1998 Jun, 159(6), 1821–1825PubMedCrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Danko Milošević
    • 1
  • Branko Miše
    • 2
  • Ivan Habuš
    • 3
  • Marija Topalović-Grković
    • 4
  • Danica Batinić
    • 1
  • Anja Tea Golubić
    • 1
  • Daniel Turudić
    • 1
  1. 1.Department for Pediatric NephrologyUniversity Children’s Hospital Zagreb, Zagreb School of MedicineZagrebCroatia
  2. 2.Department for Pediatric Infectious diseases, School of MedicineZagreb UniversityZagrebCroatia
  3. 3.Department for Physical chemistryInstitute „Ruđer Bošković“ZagrebCroatia
  4. 4.Department of Anesthesiology and Intesive CareUniversity Clinical Centre ZagrebZagrebCroatia

Personalised recommendations