Central European Journal of Medicine

, Volume 7, Issue 6, pp 800–807 | Cite as

Effects of β-1.3/1.6 glucan on cytokines production by leukocytes in vitro

  • Jurgina Sakalauskiene
  • Laimis Akramas
  • Alvydas Gleiznys
  • Ricardas Kubilius
  • Astra Vitkauskiene
  • Algimantas Surna
  • Jonas Junevicius
Research Article



The aim of the study was to investigate the immunomodulating effect of β-1,3/1,6 glucan from yeast on the production of interleukin-4 (IL-4), interleukin-5 (IL-5) in a medium of peripheral venous blood leukocytes from patients with periodontitis.


The study was performed using venous blood of 22 patients, aged 20 to 45 years, suffering from untreated severe chronic generalized periodontitis confirmed by clinical and radiological examination, and 22 periodontally healthy subjects. The effects of β-1,3/1,6 glucan on the production of the cytokines IL-4 (pg/ml) and IL-5 (pg/ml) levels by unstimulated and stimulated leukocyte incubation medium with unopsonized E. coli were determined using the Enzymes Linked Immunosorbent Assay (ELISA) method.


We found that the incubation medium of stimulated leukocytes by unopsonized E. coli and treated with 0.2 mg and 0.4 mg of ß -1,3/1,6-glucan of patients with periodontitis produced significantly higher (P<0,001; P<0,001) levels of IL-4 and IL-5 than the analogous medium of healthy subjects.


This study indicates that β-1,3/1,6-glucan may significantly increase production of IL-4 and IL-5 cytokine levels in a stimulated peripheral blood leukocytes incubation medium from periodontitis patients.


Periodontal disease β-1,3/1,6 glucan Interleukin-4 Interleukin-5 Predictors Markers Microalbuminuria 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Martin JA, Page RC, Loeb CF, Levi JPA. Tooth loss in 776 treated periodontal patients. J Periodontol 2010;81:244–250PubMedCrossRefGoogle Scholar
  2. [2]
    Nussbaum G, Shapira L. How has neutrophil research improved our understanding of periodontal pathogenesis? J Clin Periodontol 2011;38:49–59PubMedCrossRefGoogle Scholar
  3. [3]
    Kinane DF, Preshaw PM, Loos BG. Host-response: understanding the cellular and molecular mechanisms of host-microbial interactions-Consensus of the Seventh European Workshop on Periodontology. J Clin Periodontol 2011;38:44–48PubMedCrossRefGoogle Scholar
  4. [4]
    Deo V, Bhongade ML. Pathogenesis of periodontitis: role of cytokines in host response. Dent Today. 2010:29;60–62, 64–6, quiz 68–69PubMedGoogle Scholar
  5. [5]
    Kobie JJ, Shah PR, Yang L, Rebhahn JA, Fowell DJ, Mosmann TR. T regulatory and primed uncommitted CD4 T cells express CD73, which suppresses effector CD4 T cells by converting 5’-adenosine monophosphate to adenosine. J Immunol. 2006;15;177:6780–6786Google Scholar
  6. [6]
    Prabhu A, Michalowicz BS, Mathur A. Detection of local and systemic cytokines in adult periodontitis. J. Periodont.1996; 67:515–522PubMedCrossRefGoogle Scholar
  7. [7]
    Matsuki Y, Yamamoto T, Hara K. 1992. Detection of inflammatory cytokine messenger-RNA (mRNA)-expressing cells in human inflamed gingiva by combined in situ hybridization and immunohistochemistry. Immunology 1992;76: 42–47PubMedGoogle Scholar
  8. [8]
    O’Brien-Simpson NM, Pathirana RD, Paolini RA, Chen YY, Veith PD, Tam V, Ally N, Pike RN, Reynolds EC. An immune response directed to proteinase and adhesin functional epitopes protects against Porphyromonas gingivalis-induced periodontal bone loss. J Immunol 2005; 175:3980–3989PubMedGoogle Scholar
  9. [9]
    Stashenko P, Goncalves RB, Lipkin B, Ficarelli A, Sasaki H, Campos-Neto A. Th1 immune response promotes severe bone resorption caused by Porphyromonas gingivalis. Am. J. Pathol. 2007; 170:203–213PubMedCrossRefGoogle Scholar
  10. [10]
    Novak M, Vetvicka V. Glucans as biological response modifiers. Endocrine, metabolic and immune disorders-drugs targets. 2009;9:67–75Google Scholar
  11. [11]
    Vetvicka V. Glucan-immunostimulant, adjuvant, potential drug. World J Clin Oncol 2011;10:115–9.CrossRefGoogle Scholar
  12. [12]
    Russell A L. Epidemiology of periodontal disease. Int Dent J. 1967;17:282–296PubMedGoogle Scholar
  13. [13]
    Timm M, Baehr R, Hildebrand A. Lysozyme release assay — a method for proof of activation of human neutrophil granulocytes and monocytes. Allerg and Immunol. 1984;30: 175–182Google Scholar
  14. [14]
    Johannessen L, Lovik M, Lydersen S, Nilsen A M. Combined cell wall polysaccharide, mycotoxin and bacterial lipopolysaccharide exposure and inflammatory cytokine responses. APMIS 2009;117:507–517PubMedCrossRefGoogle Scholar
  15. [15]
    Sonck E, Stuyven E, Goddeeris B, Cox E. The effect of beta-glucans on porcine leukocytes. Vet Immunol Immunopathol. 2010;135(3–4):199–207PubMedCrossRefGoogle Scholar
  16. [16]
    Stopinsek S, Ihan A, Wraber B, Tercelj M, Salobir B, Rylander R, Simcic S. Fungal cell wall agents suppress the innate inflammatory cytokine responses of human peripheral blood mononuclear cells challenged with lipopolysaccharide in vitro. Int. Immunopharmacol. 2011; 11: 939–947PubMedCrossRefGoogle Scholar
  17. [17]
    Graves DT. Cytokines that promote periodontal tissue destruction. J Periodontol 2008;79:1585–91.PubMedCrossRefGoogle Scholar
  18. [18]
    Battino M, Greabu M, Totan A, Bullon P, Bucur A, Tovaru S et al. Oxidative stress markers in oral lichen planus. Biofact 2008;33:301–310CrossRefGoogle Scholar
  19. [19]
    Bajestan MN, Radvar M, Afshari JT, Naseh MR, Arab HR. Interleukin-6 production by cultured peripheral blood monocytes before and after stimulation by E. coli lipopolysaccharide in Iranian patients with aggressive periodontitis. Med Sci Monit 2006;12:CR393–396PubMedGoogle Scholar
  20. [20]
    Andrukhov O, Ulm C, Reischl H, Nguyen PQ, Matejka M, Rausch-Fan X. Serum cytokine levels in periodontitis patients in relation to the bacterial load. J Periodontol 2011;82:885–892PubMedCrossRefGoogle Scholar
  21. [21]
    Zhu J, Paul WE. Peripheral CD4+ T-cell differentiation regulated by networks of cytokines and transcription factors. Immunol Rev 2010;238:247–262PubMedCrossRefGoogle Scholar
  22. [22]
    Nüsslein HG, Winter M, Träg T, Kalden JR. Interleukin-4-induced IgG subclass and IgE secretion by mononuclear cells from atopic donors. Int Arch Allergy Appl Immunol 1991;95:257–260PubMedCrossRefGoogle Scholar
  23. [23]
    Inagaki A, Ishida T, Ishii T, Komatsu H, Iida S, Ding J, Yonekura K, Takeuchi S, Takatsuka Y, Utsunomiya A, Ueda R. Clinical significance of serum Th1-, Th2- and regulatory T cells-associated cytokines in adult T-cell leukemia/lymphoma: high interleukin-5 and -10 levels are significant unfavorable prognostic factors. Int J Cancer 2006;15;118:3054–3061CrossRefGoogle Scholar
  24. [24]
    Gamell E, Seymour GJ. Modulation of immune responses to periodontal bacteria. Curr Opin Periodontol. 1994;28–38Google Scholar
  25. [25]
    Kabashima H, Nagata K, Hashiguchi I, Toriya Y, Iijima T, Maki K et al.Interleukin-1 receptor antagonist and interleukin-4 in gingival crevicular fluid of patients with inflammatory periodontal disease.J Oral Pathol Med1996;25:449–455CrossRefGoogle Scholar
  26. [26]
    Pradeep AR, Roopa Y, Swati PP. Interleukin-4, a T-helper 2 cell cytokine, is associated with the remission of periodontal disease. J Periodontal Res 2008;43:712–716PubMedCrossRefGoogle Scholar
  27. [27]
    Rescala B, Rosalem W Jr, Teles RP, Fischer RG, Haffajee AD, Socransky SS, et al. Immunologic and microbiologic profiles of chronic and aggressive periodontitis subjects. J Periodontol 2010;81:1308–1316PubMedCrossRefGoogle Scholar
  28. [28]
    Robati M, Ranjbari A, Boroujerdnia MG, Chinipardaz Z. Detection of IL-4, IL-6 and IL-12 Serum Levels in Generalized Aggressive Periodontitis. Iran J Immunol 2011;8:170–175PubMedGoogle Scholar
  29. [29]
    Te Velde AA, Huijbens RJF, Heije K, de Vries JE, Figdor CG. Interleukin-4 inhibits secretion of IL-1b, tumor necrosis factor-a and interleukin-6 by human monocytes. Blood 1990;76:1392–1397Google Scholar
  30. [30]
    Lappin DF, MacLeod CP, Kerr A, Mitchell T, Kinane DF. Anti-inflammatory cytokine IL-10 and T cell cytokine profile in periodontitis granulation tissue. Clin Exp Immunol 2001;123:294–300PubMedCrossRefGoogle Scholar
  31. [31]
    Tam V, O’Brien-Simpson NM, Chen YY, Sanderson CJ, Kinnear B, Reynolds EC.The RgpA-Kgp proteinaseadhesin complexes of Porphyromonas gingivalis inactivate the Th2 cytokines Interleukin-4 and Interleukin-5. Infect Immunol 2009;77:1451–1458CrossRefGoogle Scholar
  32. [32]
    O’Brien-Simpson, N. M., R. D. Pathirana, G. Walker, and E. C. Reynolds. Porphyromonas gingivalis RgpA-Kgp proteinase-adhesin complexes penetrate gingival tissue and induce proinflammatory cytokines or apoptosis in a concentration-dependent manner. Infect Immun 2008; doi: 10.1128/IAI.01038-1008Google Scholar
  33. [33]
    Sonck E, Stuyven E, Goddeeris B, Cox E. The effect of beta-glucans on porcine leukocytes. Vet Immunol Immunopathol 2010;135:199–207PubMedCrossRefGoogle Scholar
  34. [34]
    Niederman R, Kelderman H, Socransky S, Ostroff G, Genco C, Kent R, Jr, Stashenko P. Enhanced neutrophil emigration and Porphyromonas gingivalis reduction following PGG-glucan treatment of mice. Archiv Oral Biol 2002;47:613–618CrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jurgina Sakalauskiene
    • 1
  • Laimis Akramas
    • 2
  • Alvydas Gleiznys
    • 1
  • Ricardas Kubilius
    • 3
  • Astra Vitkauskiene
    • 4
  • Algimantas Surna
    • 1
  • Jonas Junevicius
    • 1
  1. 1.Department of Dental and Maxillofacial Orthopedics, Medical AcademyLithuanian University of Health SciencesKaunasLithuania
  2. 2.Department of Microbiology, Medical AcademyLithuanian University of Health SciencesKaunasLithuania
  3. 3.Department of Maxillofacial Surgery and Surgical Stomatology, Medical AcademyLithuanian University of Health SciencesKaunasLithuania
  4. 4.Departament of Laboratory MedicineLithuanian University of Health SciencesKaunasLithuania

Personalised recommendations