Advertisement

Central European Journal of Medicine

, Volume 7, Issue 4, pp 409–419 | Cite as

The role of Galactose in human health and disease

  • Muhammad Ramzan Manwar Hussain
  • Mukhtarul Hassan
  • Noor Ahmad Shaik
  • Zeeshan Iqbal
Review Article

Abstract

According to the universal biological findings, cellular bodies are covered with an intense coating of glycans. Diversity of glycan chains, linked to lipids and proteins is due to isomeric and conformational modifications of various sugar residues, giving rise to unique carbohydrate structures with a wide range of sequences and anomeric configurations. Proteins and lipids, carrying specific sugar residues (like Galactose) with particular stereochemical properties (sequence, anomery and linkages) are involved in broad spectrums of biological processes, including intercellular and intracellular interactions, microbial adhesion and cellular signaling. By studying the role of specific seterochemical features of galactose (Gal), we have improved our understanding about the normal physiology and diseases in human bodies.

Keywords

D-Galactose Sequence, anomery and linkages Health Diseases 

Abbreviations

Different dietary and non dietary factors and genetic su

Gal

Galactose

GalNAc

N-acetylgalactosamine

GalNAc-ol

N-acetylgalactosaminitol

Glc

Glucose

Fuc

Fucose

GlcNAc

N-acetylglucosamine

Man

Mannose

Neu

Neuraminic acid

Cer

Ceramide

Neu5Gc

5-Glycolyl neuraminic acid

M. pneumonia

Mycoplasma pneumonia

P. granulosum

Propioni granulosum

N. gonococcus

Neisseria gonococcus

E. histolytica

Entamoeba histolytica

H. pylori

Helicobacter pylori

E.coli

Escherichia coli

Siglecs

Sialic acid binding Ig-like lectins.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Varki A. Cold Spring Harb Perspect Biol. 2011; doi: 10.1101/cshperspect.a005462Google Scholar
  2. [2]
    Janas T. & Janas T. Membrane oligo- and polysialic acids. Biochimica et Biophysica Acta. 2011 Dec;1808(12):2923–2932PubMedCrossRefGoogle Scholar
  3. [3]
    Crick F. Central dogma of molecular biology. Nature. 1970 Aug; 227(5258):561–563PubMedCrossRefGoogle Scholar
  4. [4]
    Hussain MRM, Nasirud din, Hassan M, Razaq A, Iqbal Z. Physiological significance of Fuc and Sialic acid containing glycans in body. Arabian Journal of Chemistry 2011; In pressGoogle Scholar
  5. [5]
    Zheng L, Weng M, Qi M, Qi T, Tong L, Hou X, Tong Q. Aberrant expression of intelectin-1 in gastric cancer: its relationship with clinicopathological features and prognosis. J Cancer Res Clin Oncol. 2012 Jan;138(1):163–172PubMedCrossRefGoogle Scholar
  6. [6]
    Masuyer G, Jabeen T, Oberg CT, Leffler H, Nilsson UJ, Acharya KR. Inhibition mechanism of human galectin-7 by a novel galactose-benzylphosphate inhibitor. FEBS J. 2011; doi: 10.1111/j.1742-4658.2011.08414Google Scholar
  7. [7]
    Suzuki Y, Toda Y, Tamatani T, Watanabe T, Suzuki T, Nakao T et al. Sulfated glycolipids are ligands for a lymphocyte homing receptor, L-selectin (LECAM-1), Binding epitope in sulfated sugar chain. Biochem Biophys Res Commun. 1993 Jan;190(2):426–434PubMedCrossRefGoogle Scholar
  8. [8]
    Huang LH, Yan QJ, Kopparapu NK, Jiang ZQ, Sun Y. Astragalus membranaceus lectin (AML) induces caspase-dependent apoptosis in human leukemia cells. Cell Prolif. 2011; doi: 10.1111/j.1365-2184.2011.00800Google Scholar
  9. [9]
    Fontaine T, Delangle A, Simenel C, Coddeville B, van Vliet SJ, van Kooyk Y Bozza S, Moretti S, Schwarz F, Trichot C, Aebi M, Delepierre M, Elbim C, Romani L, Latgé JP. Galactosaminogalactan, a New Immunosuppressive Polysaccharide of Aspergillus fumigatus. PLoS Pathog. 2011 Nov; 7(11):ce1002372CrossRefGoogle Scholar
  10. [10]
    Gomes MM, Suzuki H, Brooks MT, Tomana M, Moldoveanu Z, Mestecky J Julian BA, Novak J, Herr AB. Recognition of galactose-deficient O-glycans in the hinge region of IgA1 by N-acetylgalactosaminespecific snail lectins: a comparative binding study. Biochemistry. 2010 Jul; 49(27):5671–5682PubMedCrossRefGoogle Scholar
  11. [11]
    Kaleem A, Khurshid A, Ahmad I, Walker-Nasir E, Khan S Khan S, Choudhary MI, Shakoori AR And Nasir-Ud-Din. Terminal Galactose as Cancer Recognition Marker: Computing Analysis With Implications of Vicinal Sugars, Linkage and Anomery. Pakistan J. Zool. 2008; 40(2):135–143Google Scholar
  12. [12]
    Loveless RW, Yuen CT, Tsuiji H, Irimura T, Feizi T. Monoclonal antibody 91.9H raised against sulfated mucins is specific for the 3′-sulfated Lewis a tetrasaccharide sequence. 1998 Dec; 8(12):1237–1242Google Scholar
  13. [13]
    Ley K. The role of selectins in inflammation and disease. Trends Mol. Med. 2003 Jun;9(6):263–268PubMedCrossRefGoogle Scholar
  14. [14]
    Schäkel K, Kannagi R, Kniep B, Goto Y, Mitsuoka C, Zwirner J, Soruri A, von Kietzell M, Rieber E. 6-Sulfo LacNAc, a novel carbohydrate modification of PSGL-1, defines an inflammatory type of human dendritic cells. Immunity. 2002 Sep;17(3):289–301PubMedCrossRefGoogle Scholar
  15. [15]
    Weigel PH & Yik JH. Glycans as endocytosis signals: the cases of the asialoglycoprotein and hyaluronan/chondroitin sulfate receptors. Biochim. Biophys. Acta. 2002 Sep 19;1572(2–3):341–363PubMedCrossRefGoogle Scholar
  16. [16]
    Hamelryck TW, Loris R, Bouckaert J, Dao-Thi MH, Strecker G, Imberty A, Fernandez E, Wyns L, Etzler ME. Carbohydrate binding, quaternary structure and a novel hydrophobic binding site in two legume lectin oligomers from Dolichos biflorus. J Mol Biol. 1999 Mar; 286(4):1161–1177PubMedCrossRefGoogle Scholar
  17. [17]
    Dong ZM, Chapman SM, Brown AA, Frenette PS, Hynes RO, Wagner DD. Combined role of P- and E-selectins in atherosclerosis. J.Clin.Invest. 1998 Jul 1; 102(1):145–152PubMedCrossRefGoogle Scholar
  18. [18]
    Dabelsteen E, Graem N, Clausen H, Hakomori S. Structural variations of blood group A antigens in human normal colon and carcinomas. Cancer Res. 1988 Jan; 48(1):181–187PubMedGoogle Scholar
  19. [19]
    Mo H, Van Damme EJ, Peumans WJ, Goldstein IJ. Isolation and characterization of an N-acetyl-Dgalactosamine-binding lectin from Dutch Iris bulbs which recognizes the blood group A disaccharide (GalNAc alpha 1–3Gal). J Biol Chem 1994 Mar 11;269(10):7666–7673PubMedGoogle Scholar
  20. [20]
    Heiskanen A, Satomaa T, Tiitinen S, Laitinen A, Mannelin S, Impola U, Mikkola M, Olsson C, Miller-Podraza H, Blomqvist M, Olonen A, Salo H, Lehenkari P, Tuuri T, Otonkoski T, Natunen J, Saarinen J, Laine J. N-glycolyl neuraminic acid xenoantigen contamination of human embryonic and mesenchymal stem cells is substantially reversible. StemCells. 2007 Jan; 25(1):197–202Google Scholar
  21. [21]
    Hashii N, Kawasaki N, Nakajima Y, Toyoda M, Katagiri Y, Itoh S, Harazono A, Umezawa A, Yamaguchi T. Study on the quality control of cell therapy products. Determination of N-glycolyl neuraminic acid incorporated into human cells by nano-flow liquid chromatography/Fourier Transformation ion cyclotron mass spectrometry. J.Chromatogr.A. 2007 Aug;1160(1–2):263–269PubMedCrossRefGoogle Scholar
  22. [22]
    Martin MJ, Muotri A, Gage F, Varki A. Human embryonic stem cells express an immunogenic nonhuman sialic acid. 2005 Feb;11(2):228–232Google Scholar
  23. [23]
    Zhu A, Hurst R. Anti-N-glycolylneuraminic acid Antibodies identified in healthy human serum. Xenotransplantation. 2002 Nov;9(6):376–381PubMedCrossRefGoogle Scholar
  24. [24]
    Noguchi A, Mukuria CJ, Suzuki E, Naiki M. Failure of human immunoresponse to N-glycolylneuraminic acid epitope contain edinrecombinanthuman erythropoietin. Nephron. 1996;72(4):599–603PubMedCrossRefGoogle Scholar
  25. [25]
    Galili U. Evolution and pathophysiology of the human natural anti-alpha-galactosyl IgG (anti-Gal) antibody. Springer Semin Immunopathol. 1993; 15(2–3):155–171PubMedGoogle Scholar
  26. [26]
    Stapleton A, Nudelman E, Clausen H, Hakomori S, Stamm WE. Binding of uropathogenic Escherichia coli R45 to glycolipids extracted from vaginal epithelial cells is dependent on histo-blood group secretor status. J Clin Invest. 1992 Sep;90(3):965–972PubMedCrossRefGoogle Scholar
  27. [27]
    Teneberg S, Angström J, Ljungh A. Carbohydrate recognition by enterohemorrhagic Escherichia coli: characterization of a novel glycosphingolipid from cat small intestine. Glycobiology. 2004 Feb;14(2):187–196PubMedCrossRefGoogle Scholar
  28. [28]
    Ramphal R, Carnoy C, Fievre S, Michalski JC, Houdret N, Lamblin G, Strecker G, Roussel P. Pseudomonas aeruginosa recognizes carbohydrate chains containing type 1 (Gal beta 1–3GlcNAc) or type 2 (Gal beta 1–4GlcNAc) disaccharide units. Infect Immun. 1991 Feb;59(2):700–704PubMedGoogle Scholar
  29. [29]
    Teneberg S, Leonardsson I, Karlsson H, Jovall PA, Angstrom J, Danielsson D, Naslund I, Ljungh A, Wadstrom T, Karlsson KA. Lactotetraosylceramide, a novel glycosphingolipid receptor for Helicobacter pylori, present in human gastric epithelium. J Biol Chem. 2002 May;277(22):19709–19719PubMedCrossRefGoogle Scholar
  30. [30]
    Jansson L, Tobias J, Lebens M, Svennerholm A, Teneberg S. The Major Subunit, CfaB, of Colonization Factor Antigen I from Enterotoxigenic Escherichia coli Is a Glycosphingolipid Binding Protein. Infection and Immunity. 2006 June; 74(6):3488–3497PubMedCrossRefGoogle Scholar
  31. [31]
    Merritt EA, Sarfaty S, van den Akker F, L’Hoir C, Martial JA, Hol WG. Crystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide. Protein Sci. 1994 Feb;3(2):166–175PubMedCrossRefGoogle Scholar
  32. [32]
    Bock K, Breimer, ME, Brignole A, Gunnar CH, Karlsson K, Larson G. Specificity of binding of a strain of uropathogenic Escherichia coli to Gal alpha 1—4Gal-containing glycosphingolipids. J Biol Chem. 1985 Jul;260(14):8545–8551PubMedGoogle Scholar
  33. [33]
    Tucker KD, Wilkins TD. Toxin A of Clostridium difficile binds to the human carbohydrate antigens I, X, and Y. Infect Immun. 1991 Jan;59(1):73–78PubMedGoogle Scholar
  34. [34]
    Pingel S, Rheinweiler U, Kolb V, Duszenko M. Purification and Characterization Of An A-Galactosyltransferase From Trypanosoma Brucei. Biochem J. 1999 Mar 1;338(Pt 2):545–551PubMedCrossRefGoogle Scholar
  35. [35]
    Haataja S, Tikkanen K, Liukkonen J, François-Gerard C, Finne J. Characterization of a Novel Bacterial Adhesion Specificity of Streptococcus Suis Recognizing Blood Group P Receptor Oligosaccharides. J Biol Chem. 1993 Feb; 268(6):4311–4317PubMedGoogle Scholar
  36. [36]
    Krivan HC, Olson LD, Barile MF, Ginsburg V, Roberts DD. Adhesion of Mycoplasma pneumoniae to sulfated glycolipids and inhibition by dextran sulfate. J Biol Chem. 1989 June; 264(16): 9283–9288PubMedGoogle Scholar
  37. [37]
    Stromberg N, Deal C, Nyberg G, Normark S, So M, Karlsson KA. Identification of carbohydrate structures that are possible receptors for Neisseria gonorrhoeae. Proc Natl Acad Sci U SA. 1988 Jul;85(13):4902–4906CrossRefGoogle Scholar
  38. [38]
    Lindberg AA, Brown JE, Strömberg N, Westling-Ryd M, Schultz JE, Karlsson KA. Identification of the carbohydrate receptor for Shiga toxin produced by Shigella dysenteriae type. J Biol Chem. 1987 Feb;262(4):1779–1785PubMedGoogle Scholar
  39. [39]
    Suzuki Y, Toda Y, Tamatani T, Watanabe T, Suzuki T, Nakao T et al. Sulfated glycolipids are ligands for a lymphocyte homing receptor, L-selectin (LECAM-1), Binding epitope in sulfated sugar chain. Biochem Biophys Res Commun. 1993 Jan;190(2):426–434PubMedCrossRefGoogle Scholar
  40. [40]
    Galván-Moroyoqui JM, Del Carmen Domínguez-Robles M, Meza I. Pathogenic bacteria prime the induction of Toll-like receptor signalling in human colonic cells by the Gal/GalNAc lectin Carbohydrate Recognition Domain of Entamoeba histolytica. Int J Parasitol. 2011 Aug; 41(10):1101–1112. Epub 2011 Jul 13PubMedCrossRefGoogle Scholar
  41. [41]
    Xia B, Royall JA, Damera G, Sachdev GP. Altered O-glycosylation and sulfation of airway mucins associated with cystic fibrosis. Glycobiology. 2005 Aug;15(8):747–775PubMedCrossRefGoogle Scholar
  42. [42]
    Sophie D, Emmanuel M, Pascale H, Philippe D, Genevieve L, Philippe R. Sulfated oligosaccharides isolated from the respiratory mucins of a secretor patient suffering from chronic bronchitis. 2003 Mar–Apr;85(3–4):369–379Google Scholar
  43. [43]
    Mawhinney TP, Adelstein E, Morris DA, Mawhinney AM, Barbero GJ. Structure determination of five sulfated oligosaccharides derived from tracheobronchial mucus glycoproteins. J Biol Chem. 1987 Mar;262(7):2994–3001PubMedGoogle Scholar
  44. [44]
    Edwards NJ, Monteiro MA, Faller G, Walsh EJ, Moran AP, Roberts IS, High NJ. Lewis X structures in the O antigen side-chain promote adhesion of Helicobacter pylori to the gastric epithelium. 2000 Mar; 35(6):1530–1539Google Scholar
  45. [45]
    Laferte S, Prokopishyn NL, Moyana T, Bird RP. Monoclonal antibody recognizing a determinant on type 2 chain blood group A and B oligosaccharides detects oncodevelopmental changes in azoxymethane-induced rat colon tumors and human colon cancer cell lines. 1995 Jan; 57(1):101–119Google Scholar
  46. [46]
    McCorvie TJ, Timson DJ. Structural and molecular biology of type I galactosemia: disease-associated mutations. IUBMB Life. 2011 Nov;63(11):949–954PubMedCrossRefGoogle Scholar
  47. [47]
    Coss KP, Byrne JC, Coman DJ, Adamczyk B, Abrahams JL, Saldova R. IgG N-glycans as potential biomarkers for determining galactose tolerance in Classical Galactosaemia. Mol Genet Metab. 2011; doi:10.1016/j.ymgme.2011.10.018Google Scholar
  48. [48]
    Staubach S, Schadewaldt P, Wendel U, Nohroudi K, Hanisch FG. Differential glycomics of epithelial membrane glycoproteins from urinary exovesicles reveals shifts towards complex-type N-glycosylation in classical galactosemia. J Proteome Res. 2011; DOI: 10.1021/pr200711wGoogle Scholar
  49. [49]
    Kelder B, Erney R, Kopchick J, Cummings R, Prieto P. Glycoconjugates in human and transgenic animal milk. Adv Exp Med Biol. 2001;501:269–278PubMedCrossRefGoogle Scholar
  50. [50]
    Jeddi PA, Keusch J, Lydyard PM, Delves PJ. The stability of lymphocytic beta 1,4 -galactosyltransferase expression during pregnancy and lactation. Scand J Immunol. 1997 Feb;45(2):145–150PubMedCrossRefGoogle Scholar
  51. [51]
    Hölpert M, Cooper TG. Improved assays of alphalactalbumin and galactosyltransferase. Anal Biochem. 1990 Jul;188(1):168–175PubMedCrossRefGoogle Scholar
  52. [52]
    Roseman DS, Baenziger JU. The Man/GalNAc-4-SO4-receptor: relating specificity to function. Methods Enzymol. 2003; 363:121–133PubMedCrossRefGoogle Scholar
  53. [53]
    Shalgi R, Raz T. The role of carbohydrate residues in mammalian fertilization. Histol Histopathol. 1997 Jul;12(3):813–822PubMedGoogle Scholar
  54. [54]
    de Cerezo JM, Marquínez AC, Sarchi MI, Cerezo AS. Fucosylated glycoconjugates of the human spermatozoon. Comparison of the domains of these glycoconjugates with the alpha-fucosyl binding sites, and with lactosaminic glycoconjugates and beta-D-galactosyl binding site domains. Biocell. 1996 Apr; 20(1):11–20PubMedGoogle Scholar
  55. [55]
    Lisowska E, Duk M. Diversity of Natural Anti-α-Galactosyl Antibodies in Human Serum. Advances in Experimental Medicine and Biology. 2011;705:571–583PubMedCrossRefGoogle Scholar
  56. [56]
    Abd-Alla MD, Jackson TF, Soong GC, Mazanec M, Ravdin JI. Identification of the Entamoeba histolytica galactose-inhibitable lectin epitopes recognized by human immunoglobulin A antibodies following cure of amebic liver abscess. Infect Immun. 2004 Jul; 72(7):3974–3980PubMedCrossRefGoogle Scholar
  57. [57]
    Kensinger RD, Catalone BJ, Krebs FC, Wigdahl B, Schengrund C. Novel Polysulfated Galactose-Derivatized Dendrimers as Binding Antagonists of Human Immunodeficiency Virus Type 1 Infection. Antimicrob. Agents Chemother. 2004 May;48(5):1614–1623PubMedCrossRefGoogle Scholar
  58. [58]
    Watarai S, Kiura K, Shigeto R, Shibayama T, Kimura I, Yasuda T. Establishment of monoclonal antibodies specific for ganglioside GM1, detection of ganglioside GM1 in small cell lung carcinoma cell lines and tissues. J Biochem. 1994 Nov; 116(5):948–954PubMedGoogle Scholar
  59. [59]
    Miyake M, Taki T, Kannagi R, Hitomi S. First establishment of a human monoclonal antibody directed to sulfated glycosphingolipids SM4s-Gal and SM4g, from a patient with lung cancer. Cancer Res. 1992 Apr;52(8):2292–2297PubMedGoogle Scholar
  60. [60]
    Sueyoshi S, Nagakura H, Kato A, Uetsuki S, Nakayama Y, Adachi M. Monoclonal antibody GOM-2 binds to blood group B-Le(y) active glycolipid antigens on human gastric cancer cells. KATO-III. Glycoconj J. 1992 Apr;9(2):99–108CrossRefGoogle Scholar
  61. [61]
    Stroud MR, Levery SB, Nudelman ED, Salyan ME, Towell JA. Roberts CE, Watanabe M, Hakomori S. Extended type 1 chain glycosphingolipids: dimeric Lea (III4V4Fuc2Lc6) as human tumor-associated antigen. J Biol Chem. 1991; 266:8439–8446PubMedGoogle Scholar
  62. [62]
    Hansson GC, Karlsson KA, Larson G, McKibbin JM, Blaszczyk M, Herlyn M, Steplewski Z, Koprowski H. Mouse monoclonal antibodies against human cancer cell lines with specificities for blood group and related antigens. Characterization by antibody binding to glycosphingolipids in a chromatogram binding assay. J Biol Chem. 1983 Apr;258(7):4091–4097PubMedGoogle Scholar
  63. [63]
    Fukuda M, Carlsson SR, Klock JC, Dell A. Structures of O-linked oligosaccharides isolated from normal granulocytes, chronic myelogenous leukemia cells, and acute myelogenous leukemia cells. J Biol Chem. 1986 Sep 25;261(27):12796–12806PubMedGoogle Scholar
  64. [64]
    Todeschini AR, Dos Santos JN, Handa K, Hakomori SI. Ganglioside GM2-tetraspanin CD82 complex inhibits met and its cross-talk with integrins, providing a basis for control of cell motility through glycosynapse. J Biol Chem. 2007 Mar;282(11):8123–8133PubMedCrossRefGoogle Scholar
  65. [65]
    Ariga T, Suzuki M, Yu RK, Kuroda Y, Shimada I, Inagaki F, Miyatake T. Accumulation of unique globoseries glycolipids in PC 12h pheochromocytoma cells. J Biol Chem. 1989 Jan;264(3):1516–1521PubMedGoogle Scholar
  66. [66]
    Mårtensson S, Due C, Påhlsson P, Nilsson B, Eriksson H, Zopf D, Olsson L, Lundblad A. A carbohydrate epitope associated with human squamous lung cancer. Cancer Res. 1988 Apr;48(8):2125–2131PubMedGoogle Scholar
  67. [67]
    Ohyama C, Orikasa S, Kawamura S, Satoh M, Saito S, Fukushi Y, Levery SB, Hakomori S. Galactosylgloboside expression in seminoma. Inverse correlation with metastatic potential. Cancer. 1995 Sep;76(6):1043–1050Google Scholar
  68. [68]
    Vrionis FD, Wikstrand CJ, Fredman P, Månsson JE, Svennerholm L, Bigner DD. Five new epitopedefined monoclonal antibodies reactive with GM2 and human glioma and medulloblastoma cell lines. Cancer Res. 1989 Dec;49(23):6645–6651PubMedGoogle Scholar
  69. [69]
    Hiraiwa N, Iida N, Ishizuka I, Itai S, Shigeta K, Kannagi R, Fukuda Y, Imura H. Monoclonal antibodies directed to a disulfated glycosphingolipid, SB1a (GgOse4Cer-II3IV3-bis-sulfate), associated with human hepatocellular carcinoma. Cancer Res. 1988 Dec 1;48(23):6769–6774PubMedGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Muhammad Ramzan Manwar Hussain
    • 1
    • 2
  • Mukhtarul Hassan
    • 3
  • Noor Ahmad Shaik
    • 4
  • Zeeshan Iqbal
    • 1
  1. 1.Institute of Molecular sciences and BioinformaticsLahorePakistan
  2. 2.Center of Excellence in Environment StudiesKing AbdulAziz UniversityJeddahKingdom of Saudi Arabia
  3. 3.Center for Environmental StudiesBrunel UniversityWest LondonUK
  4. 4.Princess Al-Jawhara Center of Excellence in Research of Hereditary Diseases, Department of Genetic Medicine, Faculty of MedicineKing AbdulAziz UniversityJeddahKingdom of Saudi Arabia

Personalised recommendations