Advertisement

Central European Journal of Medicine

, Volume 7, Issue 4, pp 545–552 | Cite as

Regulation of gene expression in articular cells is influenced by biomechanical loading

  • Björn RathEmail author
  • Hans-Robert Springorum
  • James Deschner
  • Christian Lüring
  • Markus Tingart
  • Joachim Grifka
  • Jens Schaumburger
  • Susanne Grässel
Research Article

Abstract

Background

Biomechanical stimulation enhances cell proliferation, cell differentiation and production of extracellular matrix. To what extent the gene expression of three articular cell types is affected by a defined biomechanical stimulus was examined in this study.

Material and Methods

Fibrochondrocytes, articular chondrocytes and osteoblasts were obtained from tissues that were removed during total knee replacement surgery. Cells were seeded on BioFlex® culture plates for 3 days. Following 3 days biomechanical loading in form of continuous tensile strain was applied to the cells for 4 and 24 hours and gene expression was analyzed using real-time PCR.

Results

4 hours of biomechanical loading significantly up-regulated BMP2, COL1A1 and SOX9 gene expression in fibrochondrocytes and significantly inhibited VEGF gene expression. The expression of COL1A1 and SOX9 was significantly increased after 24 hours of biomechanical loading. When articular chondrocytes were exposed to biomechanical loading for 4 hours the expression of SOX9 and VEGF was significantly increased above control levels. 4 hours of biomechanical loading significantly induced gene expression of COL1A1 in osteoblasts.

Conclusion

Biomechanical loading affected the gene expression pattern in all investigated cell types. However, the most anabolic effect of biomechanical forces was observed on fibrochondrocytes.

Keywords

Biomechanical loading Fibrochondrocyte Articular chondrocyte Osteoblast Gene expression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Kitay G. S., Koren M.J., Helfet D.L., Parides M.K., Markenson J.A., Efficacy of combined local mechanical vibrations, continuous passive motion and thermotherapy in the management of osteoarthrtitis of the knee. Osteoarthritis Cartilage, 2009, 17, 1269–1274PubMedCrossRefGoogle Scholar
  2. [2]
    Deschner J., Wypasek E., Ferretti M., Rath B., Anghelina., Agarwal S., Regulation of RANKL by biomechnical loading in fibrochondrocytes of meniscus. J. Biomech., 2006, 39, 1796–1803PubMedCrossRefGoogle Scholar
  3. [3]
    Smith R. L., Carter D.R., Schurmann D.J., Pressure and shear differentially alter human articular chondrocyte metabolism: a review. Clin. Orthop., 2004, 427(Suppl), 89–95Google Scholar
  4. [4]
    Roelofsen J., Klein-Nulend J., Burger E.H., Mechanical stimulation by intermittent hydrostatic compression promotes bone-specific gene expression in vitro. J. Biomech., 1995, 28, 1493–1503PubMedCrossRefGoogle Scholar
  5. [5]
    Kanazawa T., Furumatsu T., Hachioji M., Oohashi T., Ninomiya Y., Ozaki T., Mechanical stretch enhances COL2A1 expression on chromatin by inducing SOX9 nuclear translocalization in inner meniscus cells. J. Orthop. Res., 2011, Aug 18, doi: 10.1002/jor.21528Google Scholar
  6. [6]
    Huang J., Ballou L.R., Hasty K.A., Cyclic equibiaxial tensile strain induces both anabolic and catabolic responses in articular chondrocytes. Gene, 2007, 404, 101–119PubMedCrossRefGoogle Scholar
  7. [7]
    Mitsui N., Suzuki N., Maeno M., Yanagisawa M., Koyama Y., Otsuka K., Shimizu N., Optimal compressive force induces bone formation via increasing bone morphogenetic proteins production and decreasing their antagonists production by Saos-2 cells. Life Sciences, 2006, 78, 2697–2706PubMedCrossRefGoogle Scholar
  8. [8]
    Rath B., Nam J., Knobloch T.J., Lannutti J.J., Agarwal S., Compressive forces induce osteogenic gene expression in calvarial osteoblasts. J. Biomech., 2008, 41, 1095–1103PubMedCrossRefGoogle Scholar
  9. [9]
    Deschner J., Rath-Deschner B., Agarwal S., Regulation of matrix metalloproteinase expression by dynamic tensile strain in rat fibrochondrocytes. Osteoarthritis Cartilage, 2006, 14, 264–272PubMedCrossRefGoogle Scholar
  10. [10]
    Ban Y., Wu Y.Y., Yu T., Geng N., Wang Y.Y., Liu X.G., Gong P., Response of osteoblasts to low fluid shear stress is time dependent. Tissue Cell, 2011, 43, 311–317PubMedCrossRefGoogle Scholar
  11. [11]
    Toyoda T., Seedhom B.B., Yao J.Q., Kirkham J., Brookes S., Bonass W.A., Hydrostatic pressure modulates proteoglycan metabolism in chondrocytes seeded in agarose. Arthritis Rheum. 2003, 48, 2865–2872PubMedCrossRefGoogle Scholar
  12. [12]
    Lima E. G., Mauck R.L., Han S.H., Park S., Ng K.W., Ateshian G.A., Hung C.T., Functional tissue engineering of chondral and osteochondral constructs. Biorheology, 2004, 41, 577–590PubMedGoogle Scholar
  13. [13]
    Tran S. C., Cooley A.J., Elder S.H., Effect of a mechanical stimulation bioreactor on tissue engineered, scaffold-free cartilage. Biotechnol. Bioeng., 2011, 108, 1421–1429PubMedCrossRefGoogle Scholar
  14. [14]
    Schulz R. M., Bader A., Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes. Eur. Biophys. J., 2007, 36, 539–68PubMedCrossRefGoogle Scholar
  15. [15]
    Petri M., Ufer K., Toma I., Becher C., Liodakis E., Brand S., Haas P., Liu C., Richter B., Haasper C., von Lewinski G., Jagodzinski M., Effects of perfusion and cyclic compression on in vitro tissue engineered meniscus implants. Knee Surg. Sports Traumatol. Arthrosc., 2011, Jul 13 [Epub ahead of print]Google Scholar
  16. [16]
    Jagodzinski M., Breitbart A., Wehmeier M., Hesse E., Haasper C., Krettek C., Zeichen J., Hankemeier S., Influence of perfusion and cyclic compression on proliferation and differentiation of bone marrow stromal cells in 3-dimensional culture. J. Biomech., 2008, 41, 1885–1891PubMedCrossRefGoogle Scholar
  17. [17]
    Deschner J., Rath-Deschner B., Reimann S., Bourauel C., Götz W., Jepsen S., Jäger A., Regulatory effects of biophysical strain on rat TMJ discs. Ann. Anat. 2007, 189, 326–328PubMedCrossRefGoogle Scholar
  18. [18]
    Darling E. M., Pritchett P.E., Evans B.A., Superfine R., Zauscher S., Guilak F., Mechanical properties and gene expression of chondrocytes on micropatterned substrates following dedifferentiation in monolayer. Cell Mol. Bioeng., 2009, 2:395–404PubMedCrossRefGoogle Scholar
  19. [19]
    Benya P. D., Shaffer J.D., Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell, 1982, 30:215–224PubMedCrossRefGoogle Scholar
  20. [20]
    Darling E. M., Athanasiou K.A., Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J. Orthop. Res., 2005, 23:425–432PubMedCrossRefGoogle Scholar
  21. [21]
    Sanchez C., Gabay O., Salvat C., Henrotin Y.E., Berenbaum F., Mechanical loading highly increases IL-6 production and decreases OPG expression by osteoblasts. Osteoarthritis Cartilage, 2009, 17:473–481PubMedCrossRefGoogle Scholar
  22. [22]
    Mawatari T., Lindsey D.P., Harris A.H., Goodman S.B., Maloney W.J., Smith R.L., Effects of tensile strain and fluid flow on osteoarthritic human chondrocyte metabolism in vitro. J. Orthop. Res., 2010, 28:907–913PubMedGoogle Scholar
  23. [23]
    Glantschnig H., Varga F., Rumpler M., Klaushofer K., Prostacyclin (PGI2): a potential mediator of c-fos expression induced by hydrostatic pressure in osteoblastic cells. Eur. J. Clin. Invest., 1996, 26:544–548PubMedCrossRefGoogle Scholar
  24. [24]
    Wang P., Zhu F., Tong Z., Konstantopoulos K., Response of chondrocytes to shear stress: antagonistic effects of the binding partners Tolllike receptor 4 and caveolin-1. FASEB J., 2011, 25:3401–3415PubMedCrossRefGoogle Scholar
  25. [25]
    Kanno T., Takahashi T., Ariyoshi W., Tsujisawa T., Haga M., Nishihara T., Tensile mechanical strain up-regulates Runx2 and osteogenic factor expression in human periosteal cells: implications for distraction osteogenesis. J. Oral Maxillofac. Surg., 2005, 63:499–504PubMedCrossRefGoogle Scholar
  26. [26]
    Ferretti M., Madhavan S., Deschner J., Rath-Deschner B., Wypasek E., Agarwal S., Dynamic biophysical strain modulates proinflammatory gene induction in meniscal fibrochondrocytes. Am. J. Physiol. Cell Physiol., 2006, 290:1610–1615CrossRefGoogle Scholar
  27. [27]
    Xu Z., Buckley M.J., Evans C.H., Agarwal S., Cyclic tensile strain acts as an antagonist of IL-1 beta actions in chondrocytes. J. Immunol., 2000, 165:453–460PubMedGoogle Scholar
  28. [28]
    Li Y., Tang L., Duan Y., Ding Y., Upregulation of MMP-13 and TIMP-1 expression in response to mechanical strain in MC3T3-E1 osteoblastic cells. BMC Res. Notes, 2010, 3:309PubMedCrossRefGoogle Scholar
  29. [29]
    Huang J., Ballou L.R., Hasty K.A., Cyclic equibiaxial tensile strain induces both anabolic and catabolic responses in articular chondrocytes. Gene, 2007, 404:101–109PubMedCrossRefGoogle Scholar
  30. [30]
    Chen D., Zhao M., Mundy G.R., Bone morphogenetic proteins. Growth Factors, 2004, 22, 233–241PubMedCrossRefGoogle Scholar
  31. [31]
    Bhargava M. M., Attia E.T., Murrell G.A., Dolan M.M., Warren R.F., Hannafin J.A., The effect of cytokines on the proliferation and migration of bovine meniscal cells. Am. J. Sports Med., 1999, 27, 636–43PubMedGoogle Scholar
  32. [32]
    Mitsui N., Suzuki N., Maeno M., Yanagisawa M., Koyama Y., Otsuka K., Shimizu N., Optimal compressive force induces bone formation via increasing bone morphogenetic proteins production and decreasing their antagonists production by Saos-2 cells. Life Sciences, 2006, 78, 2697–2706PubMedCrossRefGoogle Scholar
  33. [33]
    Zhu J., Zhang X., Wang C., Peng X., Zhang X., Different magnitudes of tensile strain induce human osteoblasts differentiation associated with the activation of ERK1/2 phosphorylation. Int. J. Mol. Sci., 2008, 9, 2322–2332PubMedCrossRefGoogle Scholar
  34. [34]
    Lingaraj K., Poh C.K., Wang W., Vascular endothelial growth factor (VEGF) is expressed during articular cartilage growth and re-expressed in osteoarthritis. Ann. Acad. Med. Singapore, 2010, 39, 399–403PubMedGoogle Scholar
  35. [35]
    Hoberg M., Uzunmehmetoglu G., Sabic L., Reese S., Aicher W.K., Rudert M.. Characterisation of human meniscus cells. Z. Orthop. Ihre Grenzgeb., 2006, 144, 172–178PubMedCrossRefGoogle Scholar
  36. [36]
    Wong M., Siegrist M., Goodwin K., Cyclic tensile strain and cyclic hydrostatic pressure differentially regulate expression of hypertrophic markers in primary chondrocytes. Bone, 2003, 33, 685–93PubMedCrossRefGoogle Scholar
  37. [37]
    Kopf S., Birkenfeld F., Becker R., Petersen W., Stärke C., Wruck C.J., Tohidnezhad M., Varoga D., Pufe T., Local treatment of meniscal lesions with vascular endothelial growth factor. J. Bone Joint Surg. Am., 2010, 92, 2682–2691PubMedCrossRefGoogle Scholar
  38. [38]
    Akiyama H., Control of chondrogenesis by the transcription factor Sox9. Mod. Rheumatol., 2008, 18, 213–219PubMedCrossRefGoogle Scholar
  39. [39]
    Perera P. M., Wypasek E., Madhavan S., Rath-Deschner B., Liu J., Nam J., Rath B., Huang Y., Deschner J., Piesco N., Wu C., Agarwal S., Mechanical signals control SOX-9, VEGF, and c-Myc expression and cell proliferation during inflammation via integrin-linked kinase, B-Raf, and ERK1/2-dependent signaling in articular chondrocytes. Arthritis Res. Ther., 2010, 12, R106. Epub 2010 May 28PubMedCrossRefGoogle Scholar
  40. [40]
    Rath B., Nam J., Knobloch T.J., Lannutti J.J., Agarwal S., Compressive forces induce osteogenic gene expression in calvarial osteoblasts. J. Biomech., 2008, 41, 1095–1103PubMedCrossRefGoogle Scholar
  41. [41]
    Li C. J., Chang J.K., Wang G.J., Ho M.L., Constitutively expressed COX-2 in osteoblasts positively regulates Akt signal transduction via suppression of PTEN activity. Bone, 2011, 48, 286–297PubMedCrossRefGoogle Scholar
  42. [42]
    Weyts F. A., Bosmans B., Niesing R., van Leeuwen J.P., Weinans H., Mechanical control of human osteoblast apoptosis and proliferation in relation to differentiation. Calcif. Tissue Int., 2003, 72, 505–512PubMedCrossRefGoogle Scholar

Copyright information

© Versita Warsaw and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Björn Rath
    • 1
    • 2
    Email author
  • Hans-Robert Springorum
    • 1
  • James Deschner
    • 3
  • Christian Lüring
    • 4
  • Markus Tingart
    • 4
  • Joachim Grifka
    • 1
    • 2
  • Jens Schaumburger
    • 1
  • Susanne Grässel
    • 1
    • 2
  1. 1.Department of Orthopaedic SurgeryUniversity of RegensburgBad AbbachGermany
  2. 2.Department of Orthopaedic Surgery, Experimental OrthopaedicsUniversity of RegensburgBad AbbachGermany
  3. 3.Clinical Research Unit 208, Center of Dento-Maxillo-Facial MedicineUniversity of BonnBonnGermany
  4. 4.Department of Orthopaedic SurgeryUniversity of AachenAachenGermany

Personalised recommendations