Skip to main content
Log in

Comparative study of the antioxidant activity of some thiol-containing substances

  • Research Article
  • Published:
Central European Journal of Medicine

Abstract

Background

Therapeutic thiol administration has been shown to have great potential in a variety of pathological conditions associated with oxidative stress. In the present study, the free radical scavenging effects against superoxide anion (\({\rm O}_{2^ - } \)) and hydroxyl (·OH) radicals of captopril were compared with those of cysteamine and mercaptoethanol. Methods: The \({\rm O}_{2^ - } \) and ·OH were generated in vitro. Deoxyribose (DR) was used as a detector of ·OH radicals. The degradation of DR was measured in terms of the formation of thiobarbituric acid reactive substances, which were quantified spectrophotometrically. Superoxide anion radicals were generated photochemically and \({\rm O}_{2^ - } \)-produced nitro-blue tetrazolium (NBT) reduction was measured.

Results

Using two distinct ·OH generating systems, the DR test showed that in the absence of the chelator diethylene triamine pentaacetic acid (DTPA) cysteamine was much more potent inhibitor of the formation of thiobarbituric acid reactive substances (TBARs) than captopril and mercaptoethanol, and that in the presence of DTPA captopril and mercaptoethanol decreased the TBARs formation in presence of H2O2 better than cysteamine. Captopril in concentration of 9.34 mM and cysteamine in concentration of 1.21 mM inhibited the \({\rm O}_{2^ - } \) provoked NBT reduction by 50%. Mercaptoethanol up to 10 mM did not manifest an inhibitory effect.

Conclusions

Captopril and mercaptoethanol are potent free radical scavengers, reacting rapidly with ·OH, whereas cysteamine acts preferentially as a chelator of iron and in this way prevents the formation of ·OH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Przyklenk K., Kloner R., Angiotensin converting enzyme inhibitors improve contractile function of stunned myocardium by different mechanisms of action. Am. Heart J., 1991, 121(5), 1319–1330

    Article  PubMed  CAS  Google Scholar 

  2. Fischer S., Maclean A.A., Liu M., Kalirai B., Keshavjee S., Inhibition of angiotensin-converting enzyme by captopril: a novel approach to reduce ischemia-reperfusion injury after lung transplantation, J. Thorac. Cardiovasc. Surg., 2000, 120(3), 573–580

    Article  PubMed  CAS  Google Scholar 

  3. Hanif K., Snehlata P., Pavar M.C., Arif E., Biswas P., Fahim M., Pasha M.A., Pasha S., Effect of 3-thienylalanine-ornithine-proline, new sulfur-containing angiotensin-converting enzyme inhibitor on blood pressure and oxidative stress in spontaneously hypertensive rats. J. Cardiovasc. Pharmacol., 2009, 53(2), 145–150

    Article  PubMed  CAS  Google Scholar 

  4. Heel R.C., Brogden R.N., Speight T.M., Avery G.S., Captopril: a preliminary review of its pharmacological properties and therapeutic efficacy. Drugs, 1980, 20(6), 409–452

    Article  PubMed  CAS  Google Scholar 

  5. Chopra M., Scott N., McMurray J., McLay J., Bridges A., Smith W.E., Belch J.J.F., Captopril: a free radical scavenger. Br. J. Clin. Pharmac., 1989, 27, 396–399

    CAS  Google Scholar 

  6. Gupta M.K., Uhm S.J., Lee H.T., Effect of vitrification and beta-mercaptoethanol on reactive oxygen species activity and in vitro development of oocytes vitrified before or after in vitro fertilization. Fertil Steril., 2010, 93(8), 2602–2607

    Article  PubMed  Google Scholar 

  7. Sun L., Xu S., Zhou M., Wang Ch., Wu Y., Chan P., Effects of cysteamine on MPTP-induced dopaminergic neurodegeneration in mice. Brain Research, 2010, 1335, 74–82

    Article  PubMed  CAS  Google Scholar 

  8. Tartier L., McCarey Y.L., Biaglow J.E, Kochevar I.E., Held K.D., Apoptosis induced by dithiothreitol in HL-60 cells shows early activation of caspase 3 and is independent of mitochondria. Cell Death and differentiation, 2000, 7(10), 1002–1010

    Article  PubMed  CAS  Google Scholar 

  9. Kachur A.V., Held K.D., Koch C.J., Biaglow J.E., Mechanism of production of hydroxyl radicals in the copper-catalyzed oxidation of dithiothreitol. Radiat. Res., 1997 147, 409–415

    Article  PubMed  CAS  Google Scholar 

  10. Biaglow J.E., Manevich Y., Uckun F., Held K.D., Quantitation of hydroxyl radicals produced by radiation and copper-linked oxidation of ascorbate by 2-deoxy-D-ribose method. Free Radic. Biol. Med., 1997, 22, 1129–1138

    Article  PubMed  CAS  Google Scholar 

  11. Gutteridge J.M., Ferrous-salt-promoted damage to deoxyribose and benzoate. The increased effectiveness of hydroxyl-radical scavengers in the presence of EDTA. Biochem. J., 1987, 243(3), 709–714

    PubMed  CAS  Google Scholar 

  12. Cohen G., In: Greewald R.A. (Ed.), Handbook of Methods for Oxygen Radical Research, CRC Press, Boca Raton, Florida, 1985, pp. 55–64.

    Google Scholar 

  13. Beauchamp C., Fridovich I., Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem., 1971, 44(1), 276–287

    Article  PubMed  CAS  Google Scholar 

  14. Cody R.J., Schaer G.L., Covit A.B., Pondolfino K., Williams G., Captopril kinetics in chronic congestive heart failure. Clin. Pharmacol. Ther., 1982, 32(6), 721–726

    Article  PubMed  CAS  Google Scholar 

  15. Misra H.P., Fridovich I., Superoxide dismutase: a photochemical augmentation assay. Arch. Biochem. Biophys., 1977, 181(1), 308–312

    Article  PubMed  CAS  Google Scholar 

  16. Winterbourn C.C., Metodiewa D., Reactivity of biologically important thiol compounds with superoxide and hydrogen peroxide. Free Radic. Biol. Med., 1999, 27(3–4), 322–328

    Article  PubMed  CAS  Google Scholar 

  17. Kukreja R.C., Kontos H.A., Hess M.L., Captopril and enalaprilat do not scavenge the superoxide anion. Am. J. Cardiol., 1990, 65(19), 24I–27I

    Article  PubMed  CAS  Google Scholar 

  18. Egan T.M., Minta J.O., Scrimgeour K.G., Cooper J.D., Captopril—a potential free radical scavenger: inhibition of PMN NADPH oxidase. Clin. Invest. Med., 1988, 11(5), 351–356

    PubMed  CAS  Google Scholar 

  19. Pisoni R.L., Park G.Y., Velilla V.Q., Thoene J.G., Detection and characterization of a transport system mediating cysteamine entry into human fifibroblast lysosomes. Specifificity for aminoethylthiol and aminoethylsulfifide derivatives. J. Biol. Chem., 1995, 270(3), 1179–1184

    Article  PubMed  CAS  Google Scholar 

  20. Coloso R. M., Hirschberger L. L., Dominy J. E., Lee J. I., Stipanuk, M. H., Cysteamine dioxygenase: evidence for the physiological conversion of cysteamine to hypotaurine in rat and mouse tissues. Adv. Exp. Med. Biol., 2006, 583, 25–36

    Article  PubMed  CAS  Google Scholar 

  21. Dominy J.E., Simmons C.R., Hirschberger L.L., Hwang J., Coloso R.M., Stipanuk M.H., Discovery and characterization of a second mammalian thiol dioxygenase: Cysteamine dioxygenase. J. Biol. Chem., 2007, 282(35), 25189–25198

    Article  PubMed  CAS  Google Scholar 

  22. Liu H.-Z., Zhong J.-P., Effects of Cysteamine on Antioxidant Ability of Mice. Journal of Henan University of Science & Technology (Natural Science), 2009, en.cnki.com.cn/Article_en/CJFDTOTAL-LYGX200901018.htm

  23. Abeydeera L. R., Wang W. H., Cantley T. C., Prather R. S., Day B. N., Presence of beta-mercaptoethanol can increase the glutathione content of pig oocytes matured in vitro and the rate of blastocyst development after in vitro fertilization. Theriogenology, 1998, 50, 747–756

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albena Alexandrova.

About this article

Cite this article

Petrov, L., Atanassova, M. & Alexandrova, A. Comparative study of the antioxidant activity of some thiol-containing substances. cent.eur.j.med 7, 269–273 (2012). https://doi.org/10.2478/s11536-011-0132-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11536-011-0132-z

Keywords

Navigation