Advertisement

Central European Journal of Medicine

, Volume 6, Issue 4, pp 418–424 | Cite as

Diameter of the ductus arteriosus as a predictor of patent ductus arteriosus (PDA)

  • Dariusz Nowak
  • Hanna Kozłowska
  • Anna Żurada
  • Jerzy Gielecki
Research Article
  • 99 Downloads

Abstract

Patent ductus arteriosus (PDA) is the most prevalent cardiovascular defect and is more often seen in females; premature babies are at increased risk. For both sexes, a relationship exists between the risk of this defect occurring and the higher dimensions of the ductus arteriosus. In this study, we examined the relationship between the dimensions of the ductus arteriosus (diameter, length, capacity) and sex. We analyzed a total of 223 fetuses, 108 males and 115 females, ranging in age from four to eight months of intrauterinal life. All fetuses of normal karyotype were obtained from spontaneous abortions. None of the analyzed specimens demonstrated any visible malformations. The increase in the length and diameters of the ductus is linearly related to gestational age. The volumetric growth of this vessel was dependent on fetal age, according to the exponential function. The large number of analyzed specimens allows reliable determination of the ductus arteriosus dimensions in consecutive months of fetal life. The data obtained could be of prognostic value during echocardiographic follow-up in the fetus. We found that the dimensions analyzed did not differ with regard to sex. It is a contradiction that, more frequently PDA in females is caused with the gender differences in the dimensions of ductus arteriosus.

Keywords

Patent ductus arteriosus Morphometry Fetal development 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Sadler T.W.; Langman’s Medical Embryology. 11th Edition. Wolters Kluwer Health/Lippincott, Wiliams & Wilkins, Philadelphia, Baltimor, New York, London, Buenos Aires, Hong Kong, Sydney, Tokyo. 2009Google Scholar
  2. [2]
    Yagel S., Silverman N.H., Gembruch U.; Fetal cardiology: embryology, genetics, physiology, echocardiographic evaluation, diagnostic and perinatal management of cardiac diseases. Informa Healthcare Publisher, ed 2, London. 2008Google Scholar
  3. [3]
    Clyman R.I.; Mechanisms regulating the ductus arteriosus. Biol Neonate. 2006, 89(4), 330–335PubMedCrossRefGoogle Scholar
  4. [4]
    Clyman R.I., Chorne N.; Patent ductus arteriosus: Evidence for and against treatment. J Pediatr. 2007, 150, 216–219PubMedCrossRefGoogle Scholar
  5. [5]
    Hermes-DeSantis E.R., Clyman R.I.; Patent ductus arteriosus: pathophysiology and management. J Perinatol., 2006, 26: S14–S18; discussion S22–3PubMedCrossRefGoogle Scholar
  6. [6]
    Freed M.D., Congenital cardiac malformations. In Avery ME, Taeusch HW (eds) Schaffer’s Disease of the Newborn. Philadelphia: WB. Saunders Company, 1984Google Scholar
  7. [7]
    Freedom R.M., Benson L.N., Smallhorn J.F.; Neonatal heart disease. Springer-Verlag, Berlin, Heidelberg, New York, 1992Google Scholar
  8. [8]
    Warnes C.A., Williams R.G., Bashore T.M., Child J.S., Connolly H.M., Dearani J.A., Del Nido P., Fasules J.W., Graham T.P. Jr, Hijazi Z.M., Hunt S.A., King M.E., Landzberg M.J., Miner P.D., Radford M.J., Walsh E.P., Webb G.D.; ACC/AHA 2008 Guidelines for the Management of Adults with Congenital Heart Disease: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to develop guidelines on the management of adults with congenital heart disease). Circulation 2008;118:e714PubMedCrossRefGoogle Scholar
  9. [9]
    Kluckow M., Evans N.; Early echocardiographic prediction of symptomatic patent ductus arteriosus in preterm infants undergoing mechanical ventilation. J Pediatr., 1995, 127(5), 774–779PubMedCrossRefGoogle Scholar
  10. [10]
    Brown E.R.; Increased risk of bronchopulmonary dysplasia in infants with patent ductus arteriosus. J Pediatr., 1979, 95, 865–866PubMedCrossRefGoogle Scholar
  11. [11]
    Reller M.D., Lorenz J.M., Kotagal U.R., Meyer R.A., Kaplan S.; Hemodynamically significant PDA: an echocardiographic and clinical assessment of incidence, natural history, and outcome in very low birth weight infants maintained in negative fluid balance. Pediatr Cardiol., 1985, 6(1), 17–23PubMedCrossRefGoogle Scholar
  12. [12]
    Stefano J.L., Abbasi S., Pearlman S.A., Spear M.L., Esterly K.L., Bhutani V.K.; Closure of the ductus arteriosus with indomethacin in ventilated neonates with respiratory distress syndrome. Effects of pulmonary compliance and ventilation. Am Rev Respir Dis., 1991; 143(2), 236–239PubMedGoogle Scholar
  13. [13]
    Shimada S., Kasai T., Konishi M., Fujiwara T.; Effects of patent ductus arteriosus on left ventricular output and organ blood flows in preterm infants with respiratory distress syndrome treated with surfactant. J Pediatr., 1994, 125(2), 270–277PubMedCrossRefGoogle Scholar
  14. [14]
    Shortland D.B., Gibson N.A., Levene M.I., Archer L.N., Evans D.H., Shaw D.E.; Patent ductus arteriosus and cerebral circulation in preterm infants. Dev Med Child Neurol., 1990, 32(5), 386–393PubMedCrossRefGoogle Scholar
  15. [15]
    Iffy L., Jakobovits A., Westlake W., Wingate M.B., Caterini H., Kanofsky P., Menduke H.; Early intrauterine development: I. The rate of growth of Caucasian embryos and fetuses between the 6th and 20th weeks of gestation. Pediatrics, 1975, 56, 173–186Google Scholar
  16. [16]
    Szyszka-Mróz J., Woźniak W.; A histological study of human ductus arteriosus during the last embryonic week. Folia Morphol (Warsz)., 2003, 62(4), 365–367Google Scholar
  17. [17]
    van Meurs-van Woezik H., Krediet P.; Measurements of the descending aorta in infants and children: comparison with other aortic dimensions. J Anat., 1982, 135, 273–279PubMedGoogle Scholar
  18. [18]
    Olley P.M.; The ductus arteriosus, its persistence and its patency. In; Anderson RH, Macartney FJ, Shinebourne EA, Tynan M. (Eds) Pediatric Cardiology, Edinburg: Churchill Livingstone, 1987Google Scholar
  19. [19]
    Angelini A., Allan L.D., Anderson R.H., Crawford D.C., Chita S.K., Ho S.Y.; Measurements of the dimensions of the aortic and pulmonary pathways in the human fetus: a correlative echocardiographic and morphometric study. Br. Heart J., 1988, 60, 221–226PubMedCrossRefGoogle Scholar
  20. [20]
    Ursell P.C., Byrne J.M., Fears T.R., Strobino B.A., Gersony W.M.; Growth of the great vessels in the normal human fetus and in the fetus with cardiac defects. Circulation, 1991; 84: 2028–2033PubMedGoogle Scholar
  21. [21]
    Achiron R., Golan-Porat N., Gabbay U., Rotstein Z., Heggesh J., Mashiach S., Lipitz S.: In utero ultrasonographic measurements of fetal aortic and pulmonary artery diameters during the first half of gestation. Ultrasound Obstet. Gynecol., 1998, 11, 180–184.PubMedCrossRefGoogle Scholar
  22. [22]
    Achiron R., Zimand S., Hegesh J., Lipitz S., Zalel Y., Rotstein Z.; Fetal aortic arch measurements between 14 and 38 weeks’ gestation: in utero ultrasonographic study. Ultrasound Obstet. Gynecol., 2000, 15, 226–230PubMedCrossRefGoogle Scholar
  23. [23]
    Castillo E.H., Arteaga-Martinez M., Garcia-Pelaez I., Villasis-Keever M.A., Aguirre O.M., Moran V., Vizcaino A.; Morphometric study of the human fetal heart. I. Arterial segment. Clin Anat., 2005, 18, 260–268Google Scholar
  24. [24]
    Gielecki J.S., Wilk R., Syc B., Musiał-Kopiejka M., Piwowarczyk-Nowak A.; Digital-image analysis of the aortic arch’s development and its variations. Folia Morphol (Warsz), 2004, 63(4), 449–454Google Scholar
  25. [25]
    Szpinda M., Szwesta A., Szpinda E.; Morphometric study of the ductus arteriosus during human development. Ann Anat., 2007, 189(1), 47–52PubMedGoogle Scholar
  26. [26]
    Gielecki J.S., Syc B., Wilk R., Musiał-Kopiejka M., Piwowarczyk-Nowak A.; Quantitative evaluation of aortic arch development using digital-image analysis. Ann Anat., 2006, 188(1), 19–23PubMedCrossRefGoogle Scholar
  27. [27]
    Alvarez L., Aranega A., Saucedo R., Lopez F., Aranega A.E., Muros M.A.; Morphometric data on the arterial duct in the human fetal heart. Int J Cardiol, 1991, 31, 337–344PubMedCrossRefGoogle Scholar
  28. [28]
    Hyett J., Moscoso G., Nicolaides K.; Morphometric analysis of the great vessels in early fetal life. Hum Reprod, 1995, 10, 3045–3048PubMedGoogle Scholar
  29. [29]
    Szpinda M.; Badania morfometryczne wielkich tętnic klatki piersiowej u płodów ludzkich. Rozprawa habilitacyjna. [Morphometric study of the great artery of the chest in human fetus], Wydawnictwo CM UMK, Bydgoszcz, 2006Google Scholar
  30. [30]
    Allan L.D., Cook A.C., Huggon I.C.; Fetal Echocardiography: a practical quide. Cambridge University Press. London, 2009Google Scholar
  31. [31]
    Castaneda A.R., Jonas R.A., Mayer J.E., Hanley F.L.; Cardiac surgery of the neonate and infant. W.B. Saunders Company, 1994Google Scholar
  32. [32]
    Karolczak M.A.; Wykłady o sercu i kardiochirurgii wad wrodzonych. [The lectures about heart and heart surgery of the congenital heart disease]. Wyd 1. Czelej. Lublin. 2008Google Scholar
  33. [33]
    Kubicka K. Kawalec W.; Kardiologia dziecięca. [Pediatric cardiology] Wydanie 1. Wydawnictwo Lekarskie PZWL, Warszawa, 2003Google Scholar
  34. [34]
    Respondek-Liberska M.; Kardiologia prenatalna dla położników i kardiologów dziecięcych. [Prenatal cardiology for obstetricians and children’s cardiologists] Wydawnictwo Czelej, Lublin, 2006Google Scholar
  35. [35]
    Szymankiewicz-Dangel J.; Kardiologia płodu. Zasady diagnostyki i terapii. [Fetal cardiology: diagnostic and therapy]. Ośrodek Wydawnictw Naukowych, Poznań, 2007Google Scholar
  36. [36]
    Mielke G., Benda N.; Reference ranges for twodimensional echocardiographic examination of the fetal ductus arteriosus. Ultrasound Obstet Gynecol, 2000, 15, 219–225PubMedCrossRefGoogle Scholar
  37. [37]
    Tan J., Sikverman N.H., Hoffmann J.I.E., Villegas M., Schmidt K.G.; cardiac dimensions determined by cross-sectional echocardiography in the normal human fetus from 18-weeks to term. Am J. Cardiol, 1992, 70, 1459–1467PubMedCrossRefGoogle Scholar
  38. [38]
    St John Sutton M., Groves A., MacNeill A., Sharland G., Allan L.; Assessment of changes in blood flow through the lungs and foramen ovale in the normal human fetus with gestational age: a prospective Doppler echocardiographic study. Br Heart J, 1994, 71, 232–237CrossRefGoogle Scholar
  39. [39]
    Rasanen J., Wood D.C., Weiner S., Lubomirski A., Huhta J.C.; Role of the pulmonary circulation in the distribution of the human fetal cardiac output during the second half of preganancy. Circulation 1996, 94, 1068–1073PubMedGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Dariusz Nowak
    • 1
  • Hanna Kozłowska
    • 2
    • 3
  • Anna Żurada
    • 3
  • Jerzy Gielecki
    • 3
  1. 1.Department of Histology and Embryology, Collegium Medicum in BydgoszczNicolaus Copernicus University in ToruńToruńPoland
  2. 2.NeuroRepair Department, Mossakowski Medical Research CentrePolish Academy of SciencesWarsawPoland
  3. 3.Department of Anatomy, Medical FacultyUniversity of Varmia and Masuria in OlsztynOlsztynPoland

Personalised recommendations