Advertisement

Central European Journal of Medicine

, Volume 6, Issue 2, pp 137–147 | Cite as

RNA interference and its therapeutic potential

  • Anubrata Ghosal
  • Ahmad Humayan Kabir
  • Abul Mandal
Review Article
  • 212 Downloads

Abstract

RNA interference is a technique that has become popular in the past few years. This is a biological method to detect the activity of a specific gene within a cell. RNAi is the introduction of homologous double stranded RNA to specifically target a gene’s product resulting in null or hypomorphic phenotypes. This technique involves the degradation of specific mRNA by using small interfering RNA. Both microRNA (miRNA) and small interfering RNA (siRNA) are directly related to RNA interference. RNAi mechanism is being explored as a new technique for suppressing gene expression. It is an important issue in the treatment of various diseases. This review considers different aspects of RNAi technique including its history of discovery, molecular mechanism, gene expression study, advantages of this technique against previously used techniques, barrier associated with this technique, and its therapeutic application.

Keywords

Cancer MicroRNA Interfering RNA Disease 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Alkhalil A., Strand S., Mucker E., Huggins J.W., Jahrling P.B., Ibrahim S.M., et al., Inhibition of Monkeypox virus replication by RNA interference. Virology Journal, 2009, 6:188, doi: 10.1186/1743-422X-6-188CrossRefPubMedGoogle Scholar
  2. [2]
    Anderson J., Akkina R., et al., HIV-1 resistance conferred by siRNA cosuppression of CXCR4 and CCR5 coreceptors by a bispecific lentiviral vector. AIDS Research and Therapy, 2005, 13:2(1), 1CrossRefGoogle Scholar
  3. [3]
    Aravin A.A., Sachidanandam R., Girard A., Fejes-Toth K., Hannon G.J., et al., Developmentally Regulated piRNA Clusters Implicate MILI in Transposon Control. Science, 2007, 316(5825), 744–747CrossRefPubMedGoogle Scholar
  4. [4]
    Aza-Blanc P., Cooper C.L., Wagner K., Batalov S., Deveraux Q.L., Cooke M.P., et al., Identification of modulators of TRAIL-induced apoptosis via RNAibased phenotypic screening. Mol Cell., 2003, 12, 627–637CrossRefPubMedGoogle Scholar
  5. [5]
    Bartel D.P., MicroRNAs: target recognition and regulatory functions. Cell, 2009, 136(2), 215–233CrossRefPubMedGoogle Scholar
  6. [6]
    Beal J., Silence is golden:can RNA interference therapeutics deliver? Business trends, 2005, 10, 3Google Scholar
  7. [7]
    Bellemin A., Bonnet M.E., Creusat G., Erbacher P., Behr J.P., et al., Sticky overhangs enhance siRNAmediated gene silencing. PNAS, 2007, 104(41), 16050–16055CrossRefGoogle Scholar
  8. [8]
    Berns K., Hijmans E.M., Mullenders J., Brummelkamp T.R., Velds A., Heinerikx M., et al., A large-scale RNAi screen in human cells identifies new components of the p53 pathways. Nature, 2004, 428, 431–437CrossRefPubMedGoogle Scholar
  9. [9]
    Bertrand J., Pottier M., Vekris A., Opolon P., Maksimenko A., Malvy C., et al., Comparison of antisense oligonucleotides and siRNAs in cell culture and in vivo. Biochem Biophys Res Commun., 2002, 296(4), 1000–1004CrossRefPubMedGoogle Scholar
  10. [10]
    Brummelkamp T.R., Nijman S.M., Dirac A.M., Bernards R., et al., Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature, 2003, 424, 797–801CrossRefPubMedGoogle Scholar
  11. [11]
    Brummelkamp T., Bernards R., Agami R., et al., Stable suppression of tumorigenicity by virusmediated RNA interference. Cancer Cel, 2002, 2(3), 243CrossRefGoogle Scholar
  12. [12]
    Carthew R., RNA interference: the fragile X syndrome connection. Curr. Biol., 2002, 12(24), 852–854CrossRefGoogle Scholar
  13. [13]
    Chen M., Du Q., Zhang H., Wahlestedt C., Liang Z., et al., Vector-based siRNA delivery strategies for high-throughput screening of novel target genes. Journal of RNAi and Gene Silencing, 2005, 1(1), 5–11PubMedGoogle Scholar
  14. [14]
    Chhabra M., Mittal V., Bhattacharya D., Rana U., Lal S., et al., Chikungunya fever: A re-emerging viral infection. Indian J. Med. Microbiol., 2008, 26(1), 5–12CrossRefPubMedGoogle Scholar
  15. [15]
    Clayton J., RNA interference: the silent treatment. Nature, 2004, 431(7008), 599–605CrossRefPubMedGoogle Scholar
  16. [16]
    Czauderna F., Fechtner M., Dames S., Aygun H., Klippel A., Pronk G., Giese K., Kaufmann J., et al., Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res., 2003, 31(11), 2705–2716CrossRefPubMedGoogle Scholar
  17. [17]
    Dasha P.K., Tiwaria M., Santhosha S.R., Paridaa M., Rao P.V.L., et al., RNA interference mediated inhibition of Chikungunya virus replication in mammalian cells. Biochemical and Biophysical Research Communications, 2008, 376(4), 718–722CrossRefGoogle Scholar
  18. [18]
    De Clercq E., Acyclic nucleoside phosphonates: past, present and future. Bridging chemistry to HIV, HBV, HCV, HPV, adeno-, herpes-, and poxvirus infections: the phosphonate bridge. Biochem Pharmacology, 2007, 73, 911–922CrossRefGoogle Scholar
  19. [19]
    DeVincenzo J., Lambkin-Williams R., Wilkinson T., Cehelsky J., Nochur S., Walsh E., Meyers R., Gollob J., Vaishnaw A., et al., A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus. PNAS, 2010, 107(19), 8800–8805CrossRefPubMedGoogle Scholar
  20. [20]
    Downward J. RNA interference. BMJ, 2004, 328, 1245–1248CrossRefPubMedGoogle Scholar
  21. [21]
    Elbashir S.M., Harborth J., Lendeckel W., Yalcin A., Weber K., Tuschl T., et al., Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001, 411, 494–498CrossRefPubMedGoogle Scholar
  22. [22]
    Fire A., Xu S., Montgomery M.K., Kostas S.A., Driver S.E., Mello, C.C., et al., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998, 391, 806–811CrossRefPubMedGoogle Scholar
  23. [23]
    Fowler T., Bamberg S., Möller P., Klenk H., Meyer T.F., Becker S., Rudel T., et al., Inhibition of Marburg virus protein expression and viral release by RNA interference. J. Gen. Virol., 2005, 86, 1181–1188CrossRefPubMedGoogle Scholar
  24. [24]
    Fuchs U., Damm-Welk C., Borkhardt A., et al., Silencing of disease-related genes by small interfering RNAs. Curr. Mol. Med. 2004, 4(5), 507–517CrossRefPubMedGoogle Scholar
  25. [25]
    Fumitaka T., Takahiro O., et al., Therapeutic potential of RNA interference against cancer. Cancer Science, 2006, 97(8), 689–696CrossRefGoogle Scholar
  26. [26]
    Futami T., Miyagishi M., Seki M., Taira K. Indu, et al., ction of apoptosis in HeLa cells with siRNA expression vector targeted against bcl-2. Nucleic Acids Res. Suppl., 2002, (2), 251–252Google Scholar
  27. [27]
    Gao Y., Yu L., Wei W., Li J., Luo Q., Shen J., et al., Inhibition of hepatitis B virus gene expression and replication by artificial microRNA. World Journal of Gastroenterology, 2008, 14(29), 4684–4689CrossRefPubMedGoogle Scholar
  28. [28]
    Genc S., Tolga F.K., Genc K., et al., RNA interference in neuroscience. Science Direct, 2004, 132(2), 260–270Google Scholar
  29. [29]
    Gong H., Liu C., Liu D., Liang C., et al., The role of small RNAs in human diseases: potential troublemaker and therapeutic tools. Med. Res. Rev., 2005, 25(3), 361–381CrossRefPubMedGoogle Scholar
  30. [30]
    Guo S., Kemphues K.J., et al., par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell, 1995, 81, 611–620CrossRefPubMedGoogle Scholar
  31. [31]
    Großhans H., Filipowicz W., et al., The expanding world of small RNAs. Nature, 2008, 451, 414–416CrossRefPubMedGoogle Scholar
  32. [32]
    Guru T., A silence that speaks volumes. Nature, 2000, 404, 804–808CrossRefGoogle Scholar
  33. [33]
    Hammond S.M., Boettcher S., Caudy A.A., Kobayashi R., Hannon G.J., et al., Argonaute2, a link between genetic and biochemical analyses of RNAi. Science, 2001, 293(5532), 1146–1150CrossRefPubMedGoogle Scholar
  34. [34]
    Thomson J., Hemann M., Hernando-Monge E., Mu D., Goodson S., Powers S., Cordon-Cardo C., Lowe S., Hannon G., Hammond S., et al., A microRNA polycistron as a potential human oncogene. Nature, 2005, 435(7043), 828–833CrossRefPubMedGoogle Scholar
  35. [35]
    Heidel J., Hu S., Liu X., Triche T., Davis M., et al., Lack of interferon response in animals to naked siRNAs. Nat. Biotechnol., 2005, 22(12), 1579–1582CrossRefGoogle Scholar
  36. [36]
    Holen T., Amarzguioui M., Wiiger M.T., Babaie E., Prydz H., et al., Positional effects of short interfering RNAs targeting the human coagulation trigger tissue factor. Nucleic Acids Res., 2002, 30(8), 1757–1766CrossRefPubMedGoogle Scholar
  37. [37]
    Hutvagner G., Zamore P., et al., A microRNA in a multiple-turnover RNAi enzyme complex. Science, 2002, 297(5589), 2056–2060CrossRefPubMedGoogle Scholar
  38. [38]
    Jackson A., Bartz S., Schelter J., Kobayashi S., Burchard J., Mao M., Li B., Cavet G., Linsley P., et al., Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol., 2003, 21(6), 635–637CrossRefPubMedGoogle Scholar
  39. [39]
    Kapadia S.B., Brideau-Andersen A., Chisari F.V., et al., Interference of hepatitis C virus RNA replication by short interfering RNAs. PNAS, 2008, 100(4), 2014–2018CrossRefGoogle Scholar
  40. [40]
    Kariko K., Bhuyan P., Capodici J., Weissman D., et al., Small interfering RNAs mediate sequenceindependent gene suppression and induce immune activation by signaling through toll-like receptor 3. J. Immunol., 2004, 172(11), 6545–6549PubMedGoogle Scholar
  41. [41]
    Kim S., Peer D., Kumar P., Subramanya S., Wu H., Asthana D., Habiro K., Yang Y., Manjunath N., Shimaoka M., Shankar P., et al., RNAi-mediated CCR5 Silencing by LFA-1-targeted Nanoparticles Prevents HIV Infection in BLT Mice. Molecular Therapy, 2010, 18(2), 370–376CrossRefPubMedGoogle Scholar
  42. [42]
    Kumar P., Ban H.S., Kim S.S., Wu H., Pearson T., Greiner D.L., Laouar A., Manjunath N., Shultz L.D., Lee S.K., Shankar P., et al., T Cell-Specific siRNA Delivery Suppresses HIV-1 Infection in Humanized Mice. Cell, 2008, 134, 577–586CrossRefPubMedGoogle Scholar
  43. [43]
    Lee M.M., Coburn G., McClure M.O., Cullen B.R., et al., Inhibition of human immunodeficiency virus type 1 replication in primary macrophages by using tat- or CCR5-specific small interfering RNAs expressed from a lentivirus vector. J. Virol., 2003, 77, 11964–11972CrossRefPubMedGoogle Scholar
  44. [44]
    Liu YP, Gruber J, Haasnoot J, Konstantinova P., Berkhout B., et al., RNAi-mediated inhibition of HIV-1 by targeting partially complementary viral sequences. Nucl. Acids Res. 2009, doi: 10.1093/nar/gkp644Google Scholar
  45. [45]
    Ma Z., Li J., He F., Wilson A., Pitt B., Li S., et al., Cationic lipids enhance siRNA-mediated interferon response in mice. Biochem. Biophys. Res. Commun., 2005, 330(3), 755–759CrossRefPubMedGoogle Scholar
  46. [46]
    Matranga C., Tomari Y., Shin C., Bartel D.P., Zamore P.D., et al., Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell, 2005, 123, 607–620CrossRefPubMedGoogle Scholar
  47. [47]
    Martinez L., Naguibneva I., Lehrmann H., Vervisch A., Tchenio T., Lozano G., Harel-Bellan A., et al., Synthetic small inhibiting RNAs: efficient tools to inactivate oncogenic mutations and restore p53 pathways. Proc. Natl. Acad. Sci. 2002, USA 99(23), 14849–14854CrossRefGoogle Scholar
  48. [48]
    Matthew L., RNAi for plant functional genomics. Comp Func. Genom., 2004, 5, 240–244CrossRefGoogle Scholar
  49. [49]
    McCaffrey A.P., Meuse L., Pham T.T., Conklin D.S., Hannon G.J., Kay M.A., et al., RNA interference in adult mice. Nature, 2002, 418, 38–39CrossRefPubMedGoogle Scholar
  50. [50]
    McCaffrey A.P., Nakai H., Pandey K., Huang Z., Salazar F.H., Xu H., Wieland S.F., Marion P.L., Kay M.A., et al., Inhibition of hepatitis B virus in mice by RNA interference. Nature Biotechnology, 2003, 21, 639–644CrossRefPubMedGoogle Scholar
  51. [51]
    Miller V., Xia H., Marrs G., Gouvion C., Lee G., Davidson B., Paulson H., et al., Allele-specific silencing of dominant disease genes. Proc. Natl. Acad. Sci., 2003, 100(12), 7195–7200CrossRefPubMedGoogle Scholar
  52. [52]
    Morrissey D., Blanchard K., Shaw L., Jensen K., Lockridge J., Dickinson B., McSwiggen J., Vargeese C., Bowman K., Shaffer C., Polisky B., Zinnen S., et al., Activity of stabilized short interfering RNA in a mouse model of hepatitis B virus replication. Hepatology, 2005, 41(6), 1349–1356CrossRefPubMedGoogle Scholar
  53. [53]
    Napoli C., Lemieux C., Jorgensen R., et al., Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell, 1990, 2, 279–289CrossRefPubMedGoogle Scholar
  54. [54]
    Novina C.D., Murray M.F., Dykxhoorn D.M., Beresford P.J., Riess J., Lee S.K., Collman R.G., Lieberman J., Shankar P., Sharp P.A., et al., siRNAdirected inhibition of HIV-1 infection. Nat. Med., 2002, 8(7), 681–686PubMedGoogle Scholar
  55. [55]
    Peyman A., Helsberg M., Kretzschmar G., Mag M., Grabley S., Uhlmann E., et al., Inhibition of viral growth by antisense oligonucleotides directed against the IE110 and the UL30 mRNA of herpes simplex virus type-1. Biol. Chem. Hoppe Seyler. 1995, 376(3), 195–198PubMedGoogle Scholar
  56. [56]
    Qiuwei P., Rong C., Xinyuan L., Cheng Q., et al., A novel strategy for cancer gene therapy: RNAi. Chinese Science Bulletin, 2006, 51(10), 1145–1151CrossRefGoogle Scholar
  57. [57]
    Robert W., Williamsand, M.R., et al., Argonaute1 is required for efficient RNA interference in Drosophila embryos. Proc. Natl. Acad. Sci., 2002, 99(10), 6889–6894CrossRefGoogle Scholar
  58. [58]
    Romano N., Macino G., et al., Quelling: transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Mol. Microbiol., 1992, 6, 3343–3353CrossRefPubMedGoogle Scholar
  59. [59]
    Sen G.L., Blau H.M., et al., A brief history of RNAi: the silence of the genes. The FASEB Journal, 2006, 20, 1293–1299CrossRefPubMedGoogle Scholar
  60. [60]
    Scherer L., Rossi J., et al., Approaches for the sequence-specific knockdown of mRNA. Nat. Biotechnol., 2003, 21(12), 1457–1465CrossRefPubMedGoogle Scholar
  61. [61]
    Schubert S., Grunweller A., Erdmann V., Kurreck J., et al., Local RNA target structure influences siRNA efficacy: systematic analysis of intentionally designed binding regions. J. Mol. Biol., 2005, 348(4), 883–893CrossRefPubMedGoogle Scholar
  62. [62]
    Shankar P., Song E., Lee S.K., Dykxhoom D.M., Novina C., Crawford K., Cerny J., Sharp P.A., Lieberman J., Swamy M.N., et al., Sustained siRNAmediated HIV Inhibition in Primary Macrophages. Abstr. 10th Conf. Retrovir. Oppor. Infect., 2003, 225Google Scholar
  63. [63]
    Slimane R.H., Lepelletier Y., Lopez N., Garbay C., Raynaud F., et al., Short interfering RNA (siRNA), a novel therapeutic tool acting on angiogenesis. Science Direct, 2007, 89(10), 1234–1244Google Scholar
  64. [64]
    Soutschek J., Akinc A., Bramlage B., Charisse K., Constien R., Donoghue M., Elbashir S., Geick A., Hadwiger P., Harborth J., John M., Kesavan M., Lavine G., Pandey R., Racie T., Rajeev K., Rohl I., Toudjarska I., Wang G., Wuschko S., Bumcrot D., Koteliansky V., Limmer S., Manoharan M., Vornlocher H., et al., Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature, 2004, 432(7014), 173–178CrossRefPubMedGoogle Scholar
  65. [65]
    Susan L.U., The therapeutic potential of RNA interference. FEBS Letters, 2005, 579, 5996–6007CrossRefGoogle Scholar
  66. [66]
    Tewari M., Vidal M., et al., RNAi on the apoptosis TRAIL: the mammalian cell genetic screen comes of age. Dev. Cell., 2003, 5, 534–535CrossRefPubMedGoogle Scholar
  67. [67]
    Tomanin R., Scarpa M., et al., Why do we need new gene therapy viral vectors? Characteristics, limitations and future perspectives of viral vector transduction. Curr. Gene Ther., 2004, 4(4), 357–372PubMedGoogle Scholar
  68. [68]
    Wilda M., Fuchs U., Wossmann W., Borkhardt A., et al., Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference (RNAi). Oncogene, 2002, 21(37), 5716–5724CrossRefPubMedGoogle Scholar
  69. [69]
    Williams M., Clark G., Sathasivan K., Islam A.S., et al., RNA Interference and its Application in Crop Improvement. Plant tissue culture and Biotechnology, 2004, 1, 18Google Scholar
  70. [70]
    Wilson J.A., Richardson C.D., et al., Hepatitis C Virus Replicons Escape RNA Interference Induced by a Short Interfering RNA Directed against the NS5b Coding Region. Journal of Virology, 2005, 79(11), 7050–7058CrossRefPubMedGoogle Scholar
  71. [71]
    Xia H., Mao Q., Paulson H.L., Davidson B.L., et al., siRNA-mediated gene silencing in vitro and in vivo. Nat. Biotechnol., 2002, 20, 1006–1010CrossRefPubMedGoogle Scholar
  72. [72]
    Xu Y., Zhang H., Thormeyer D., Larsson O., Du Q., Elmen J., Wahlestedt C., Liang Z., et al., Effective small interfering RNAs and phosphorothioate antisense DNAs have different preferences for target sites in the luciferase mRNAs. Biochem. Biophy. Res. Commun., 2003, 306(3), 712–717CrossRefGoogle Scholar
  73. [73]
    Yang G., Thompson J., Fang B., Liu J., et al., Silencing of H-ras gene expression by retrovirusmediated siRNA decreases transformation efficiency and tumor growth in a model of human ovarian cancer. Oncogene, 2003, 22(36), 5694–5701CrossRefPubMedGoogle Scholar
  74. [74]
    Zentilin L., Giacca M., et al., In vivo transfer and expression of genes coding for short interfering RNAs. Curr. Pharm. Biotechnol., 2004, 5(4), 341–347CrossRefPubMedGoogle Scholar
  75. [75]
    Zhang W., Sumita B., Rajeswari S., Lockey R.F., Mohapatra S.S., et al., Inhibition of respiratory syncytial virus infection with intranasal siRNA nanoparticles targeting the viral NS1 gene. Nature Medicine, 2005, 11(1), 56–62CrossRefPubMedGoogle Scholar
  76. [76]
    Ryan K.J., Ray C.G. Sherris Medical Microbiology, (4th ed.), McGraw Hill. pp. 624–628. ISBN 0-8385-8529-9, 2004Google Scholar
  77. [77]
    Pfeifer A., Eigenbrod S., Al-Khadra S., Hofmann A., Mitteregger G., Moser M., Bertsch U., Kretzschmar H. Lentivector-mediated RNAi efficiently suppresses prion protein and prolongs survival of scrapie-infected mice. J. Clin. Invest., 2006, 116, 3204–3210CrossRefPubMedGoogle Scholar
  78. [78]
    White M.D., Farmer M., Mirabile I., Brandner S., Collinge J., Mallucci G.R. Single treatment with RNAi against prion protein rescues early neuronal dysfunction and prolongs survival in mice with prion disease. PNAS, 2008, 105(29), 10238–10243CrossRefPubMedGoogle Scholar
  79. [79]
    Geng Y.J., Libby P. Progression of atheroma: a struggle between death and procreation. Arterioscler Thromb Vasc Biol., 2002, 22, 1370–1380CrossRefPubMedGoogle Scholar
  80. [80]
    Frank-Kamenetsky M., Grefhorst A., Anderson N.N., Racie T.S., Bramlage B., Akinc A., Butler D., Charisse K., Dorkin R., Fan Y. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc. Natl. Acad. Sci. USA., 2008, 105, 11915–11920CrossRefPubMedGoogle Scholar
  81. [81]
    Ukomadu C., Dutta A. Inhibition of cdk2 activating phosphorylation by mevastatin. J Biol Chem., 2003, 278, 4840–4846CrossRefPubMedGoogle Scholar
  82. [82]
    Barth J., Volknandt W. Evaluation of small hairpin RNA silencing efficiency in live cells by cotransfection of two fluorescent probes. Anal Biochem., 2008, 379(1), 133–135CrossRefPubMedGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Anubrata Ghosal
    • 1
  • Ahmad Humayan Kabir
    • 2
  • Abul Mandal
    • 3
  1. 1.Institute of Cellular and Molecular MedicineUniversity of CopenhagenCopenhagenDenmark
  2. 2.School of Biological SciencesFlinders UniversityFlindersAustralia
  3. 3.System Biology Research Center, School of Life SciencesUniversity of SkövdeSkövdeSweden

Personalised recommendations