Advertisement

Central European Journal of Medicine

, Volume 6, Issue 2, pp 234–242 | Cite as

Comparing hyoscine and drotaverine effects on colon in CT colonography

  • Athanas D. Kristev
  • Nikolay V. Sirakov
  • Damianka P. Getova
  • Vasil I. Katcarov
  • Vladimir N. Sirakov
  • Rumen S. Stefanov
  • Valentin I. Turiiski
  • Kichka G. Velkova
Research Article
  • 75 Downloads

Abstract

Hyoscine and drotaverine effectiveness was compared for the purposes of achieving optimum distension following insufflation in CT colonography. The in vitro effects of hyoscine and drotaverine on tone and contractility of SM preparations isolated from different areas of human colon were studied by isometric registration of contractile activity. Both medications have a relaxing effect on SM preparations and inhibit their spontaneous contractions. The drotaverine-induced effects were reliably more marked than the hyoscine-induced ones. CT colonography was performed in 70 patients who were injected with equal doses of either hyoscine (n=32) or drotaverine (n=38). The degree of drug-induced distension in both groups was determined by measuring the lumen of the colon on a 2D reconstruction. In most colon areas the width of the distended lumen was greater in the drotaverine-treated patients. We concluded that drotaverine can be used as a means to facilitate colonic distension.

Keywords

SM preparation Hyoscine Drotaverine Human colon CT colonography Distension 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Laghi A., Virtual colonoscopy: clinical application, Eur. Radiol., 2005, 15Suppl 4, D138–141PubMedGoogle Scholar
  2. [2]
    Deshpande K.K., Summers R.M., Van Uitert R.L., Franaszek M., Brown L., Dwyer A.J., et al., Quality assessment for CT colonography: validation of automated measurement of colonic distention and residual fluid, A.J.R., 2007, 189, 1457–1463Google Scholar
  3. [3]
    Taylor S.A., Halligan S., Goh V., Morley S., Bassett P., Atkin W., et al., Optimizing colonic distention for multi-detector row CT colonography: effect of hyoscine butylbromide and rectal balloon catheter, Radiology, 2003, 229, 99–108CrossRefPubMedGoogle Scholar
  4. [4]
    Levatter R., Rethinking the argument against glucagon for CT colonography, A.J.R., 2000, 174, 1787–1790Google Scholar
  5. [5]
    Morrin M.M., Farrell R.J., Keogan M.T., Kruskal J.B., Yam C.S., Raptopoulos V., CT colonography: colonic distention improved by dual positioning but not intravenous glucagon, Eur. Radiol., 2002, 12, 525–530PubMedGoogle Scholar
  6. [6]
    Rogalla P., Lembcke A., Rückert J.C., Hein E., Bollow M., Rogalla N.E., et al., Spasmolysis at CT colonography: butylscopolamine versus glucagon, Radiology, 2005, 236, 184–188CrossRefPubMedGoogle Scholar
  7. [7]
    Power N., Pryor M., Martin A., Horrocks J., McLean A., Reznek R., Optimization of scanning parameters for CT colonography, Br. J. Radiol., 2002, 75, 401–408PubMedGoogle Scholar
  8. [8]
    Bruzzi J.F., Moss A.C., Brennan D.D., MacMathuna P., Fenlon H.M., Efficacy of IV Buscopan as a muscle relaxant in CT colonography, Eur. Radiol. 2003, 13, 2264–2270CrossRefPubMedGoogle Scholar
  9. [9]
    Yee J., CT colonography: examination prerequisites, Abdom. Imaging., 2002, 27, 244–252PubMedGoogle Scholar
  10. [10]
    Tytgat G.N., Hyoscine butylbromide: a review of its use in the treatment of abdominal cramping and pain, Drugs, 2007, 67, 1343–1357CrossRefPubMedGoogle Scholar
  11. [11]
    Khalif I.L., Quigley E.M., Makarchuk P.A., Golovenko O.V., Podmarenkova L.F., Dzhanaev Y.A., Interactions between symptoms and motor and visceral sensory responses of irritable bowel syndrome patients to spasmolytics (antispasmodics). J Gastrointestin Liver Dis, 2009, 18, 17–22PubMedGoogle Scholar
  12. [12]
    Sirakov N.V., Velkova K.G., Nikolov R.R., Sirakov V.N., Improvement of visualization in computed tomographic colonography after mechanic air insufflations, Folia Medica, 2006, 48, 46–49PubMedGoogle Scholar
  13. [13]
    Gill R.C., Cote K.R., Bowes K.L., Kingma Y.J., Human colonic smooth muscle: electrical and contractile activity in vitro, Gut 1986, 27, 293–299CrossRefPubMedGoogle Scholar
  14. [14]
    Rami A., Krieglstein J., Muscarinic-receptor antagonist scopolamine rescues hippocampal neurons from death induced by glutamate, Brain Res. 1998, 788, 323–328CrossRefPubMedGoogle Scholar
  15. [15]
    Gómez A., Martos F., Bellido I., Marquez E., Garcia A., Pavia J., et al., Muscarinic receptor subtypes in human and rat colon smooth muscle, Biochem. Pharmacol. 1992, 43, 2413–2419CrossRefPubMedGoogle Scholar
  16. [16]
    Preiksaitis H.G., Krysiak P.S., Chrones T., Rajgopal V., Laurier L.G., Pharmacological and molecular characterization of muscarinic receptor subtypes in human esophageal smooth muscle, J. Pharmacol. Exp. Ther. 2000, 295, 879–888PubMedGoogle Scholar
  17. [17]
    Stengel P.W., Yamada M., Wess J., Cohen M.L., M3-receptor knockout mice: muscarinic receptor function in atria, stomach fundus, urinary bladder, and trachea, Am. J. Physiol., 2002, 282, R1443–R1449Google Scholar
  18. [18]
    Matsui M., Motomura D., Fujikawa T., Jiang J., Takahashi S., Manabe T., et al., Mice lacking M2 and M3 muscarinic acetylcholine receptors are devoid of cholinergic smooth muscle contractions but still viable, J. Neurosci. 2002, 22, 10627–10632PubMedGoogle Scholar
  19. [19]
    Wang J., Krysiak P.S., Laurier L.G., Sims S.M., Preiksaitis H.G., Human esophageal smooth muscle cells express muscarinic receptor subtypes M1 through M5, Am. J. Physiol., 2000, 279, G1059–G1069Google Scholar
  20. [20]
    Kerr P.M., Hillier K., Wallis R.M., Garland C.J., Characterization of muscarinic receptors mediating contractions of circular and longitudinal muscle of human isolated colon, Br. J. Pharmacol. 1995, 115, 1518–1524PubMedGoogle Scholar
  21. [21]
    Mansfield K.J., Mitchelson F.J., Moore K.H., Burcher E., Muscarinic receptor subtypes in the human colon: lack of evidence for atypical subtypes, Eur. J. Pharmacol., 2003, 482, 101–109CrossRefPubMedGoogle Scholar
  22. [22]
    Barocelli E., Ballabeni V., Chiavarini M., Caretta A., Molina E., Impicciatore M., Regional differences in motor responsiveness to antimuscarinic drugs in rabbit isolated small and large intestine, Pharmacol. Res. 1995, 31, 43–48CrossRefPubMedGoogle Scholar
  23. [23]
    Turiiski V.I., Krustev A.D., Sirakov V.N., Getova D.P., In vivo and in vitro study of the influence of anticholinesterase drug galantamine on motor I evacuative functions of rat gastrointestinal tract, Eur. J. Pharmacol., 2004, 498, 233–239CrossRefPubMedGoogle Scholar
  24. [24]
    Hoting E., Reiss J., Schulz K.H., Papaverineffective in therapy of pruritus of atopic dermatitis, Z. Hautkr., 1990, 65, 725–729PubMedGoogle Scholar
  25. [25]
    Willenbucher R.F., Xie Y.N., Eysselein V.E., Snape Jr. W,R., Mechanisms of cAMP-mediated relaxation of distal circular muscle in rabbit colon, Am. J. Physiol. Gastrointest. Liver Physiol., 1992, 262, G159–G164Google Scholar
  26. [26]
    Lin CS., Lin G., Xin ZC., Lue TF., Expression, distribution and regulation of phosphodiesterase 5, Curr. Pharm., 2006, 12, 3439–3457CrossRefGoogle Scholar
  27. [27]
    Rüegg J.C., Sparrow M.P., Mrwa U., Cyclic-AMP mediated relaxation of chemically skinned fibers of smooth muscle, Pflugers Arch., 1981, 390, 198–201CrossRefPubMedGoogle Scholar
  28. [28]
    Kusakari Y., Hongo K., Kawai M., Konishi M., Kurihara S., Use of the Ca-shortening curve to estimate the myofilament responsiveness to Ca2+ in tetanized rat ventricular myocytes, J. Physiol. Sci., 2006, 56, 219–226CrossRefPubMedGoogle Scholar
  29. [29]
    Takashi O., Masatoshi H., Hiroshi O., Mechanism of abnormal intestinal motility in inflammatory bowel disease: how smooth muscle contraction is reduced?, Smooth Muscle Res. 2007, 43, 43–54CrossRefGoogle Scholar
  30. [30]
    McConalogue K., Furness J.B., Gastrointestinal neurotransmitters, Bailliere’s Clin. Endocrinol. Metab., 1994, 8, 51–76CrossRefGoogle Scholar
  31. [31]
    Shafik A., Origin of rectal electric waves: further study, Dis. Colon. Rectum., 1999, 42, 1626–1631CrossRefPubMedGoogle Scholar
  32. [32]
    Langton P., Ward S.M., Carl A., Norell M.A., Sanders K.M., Spontaneous electrical activity of interstitial cells of Cajal isolated from canine proximal colon, Proc. Natl. Acad. Sci. USA, 1989, 86, 7280–7284CrossRefPubMedGoogle Scholar
  33. [33]
    Shafik A., El-Sibai O., Role of the enteric nervous plexus in rectal motile activity: an experimental study, J. Invest. Surg. 2001, 14, 275–281CrossRefPubMedGoogle Scholar
  34. [34]
    Tsugeno M., Huang S.M., Pang Y.W., Chowdhury J.U., Tomita T: Effects of phosphodiesterase inhibitors on spontaneus electical activity (slow waves) in the guinea pig gastric muscle, J. Physiol., 1995, 485, 493–502PubMedGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Athanas D. Kristev
    • 1
  • Nikolay V. Sirakov
    • 2
  • Damianka P. Getova
    • 3
  • Vasil I. Katcarov
    • 1
  • Vladimir N. Sirakov
    • 2
  • Rumen S. Stefanov
    • 4
  • Valentin I. Turiiski
    • 1
  • Kichka G. Velkova
    • 2
  1. 1.Departments of BiophysicsMedical University — PlovdivPlovdivBulgaria
  2. 2.Image DiagnosticsMedical University — PlovdivPlovdivBulgaria
  3. 3.Pharmacology and Clinical Pharmacology Medical University — PlovdivPlovdivBulgaria
  4. 4.Social medicine and health management Medical University — PlovdivPlovdivBulgaria

Personalised recommendations