The effect of vitamin C on amiodarone-induced toxicity in rat thymocytes

Abstract

Although, the antiarrhythmic effect of amiodarone (AMD) is well characterized, the mechanism of its toxicity on extracardiac tissues is still poorly understood. Several antioxidants have been shown to prevent AMD-induced toxicity by antioxidant and/or non-antioxidant mechanisms. In the current study, we evaluated the possible protective effect, in vitro, of vitamin C on AMD-induced toxicity in rat thymocytes. Rat thymocytes were cultured with increasing AMD concentrations (1–20 μM) with or without vitamin C (1000 μg/ml), for 24 hours. Cells treatment with AMD resulted in a concentration-dependent increase of hypodiploid cells and a significant decrease in cellular glutathione content. Vitamin C combined with AMD significantly decreased the proportion of hypodiploid cells and markedly increased the cellular glutathione content, compared with AMD treatment alone. These results suggest that treatment with vitamin C may prevent AMD-induced toxicity in rat thymocytes by restoring cellular glutathione content.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    Kodama I, Kamiya K, Toyama J. (1999). Amiodarone: ionic and cellular mechanisms of action of the most promising class III agent. Am J Cardiol, 84, 20–8

    Article  Google Scholar 

  2. [2]

    Bargout R, Jankov A, Dincer E, Wang R, Komodromos T, Ibarra-Sunga, Filippatos G, Uhal BD. (2000). Amiodarone induces apoptosis of human and rat alveolar epithelial cells in vitro. Am J Physiol, 278, 1039–44

    Google Scholar 

  3. [3]

    Jamshidzadeh A, Baghban M, Azarpira N, Bardbori AM, Niknahad H. (2008). Effects of tomato extract on oxidative stress induced toxicity in different organs of rats. Food Chem Toxicol, 46, 3612–15

    CAS  Article  PubMed  Google Scholar 

  4. [4]

    Kaufmann P, Torok M, Hanni A, Roberts P, Gasser R, Krahenbuhl S. (2005). Mechanisms of benzarone and benzbromarone induced hepatic toxicity. Hepatology, 41, 925–35

    CAS  Article  PubMed  Google Scholar 

  5. [5]

    Di Matola T, D’Ascoli F, Fenzi G, Rossi G, Martino E, Bogazzi F, Vitale M. (2000). Amiodarone induces cytochrome c release and apoptosis through an iodine-independent mechanism. J Clin Endocrinol Metab, 85, 4323–30

    Article  PubMed  Google Scholar 

  6. [6]

    Isomoto S, Kawakami A, Arakaki T, Yamashita S, Yano K, Ono K. (2006). Effects of antiarrhythmic drugs on apoptotic pathways in H9c2 cardiac cells. J Pharmacol Sci, 101, 318–24

    CAS  Article  PubMed  Google Scholar 

  7. [7]

    Varbiro G, Toth A, Tapodi A, Veres B, Sumegi B, Gallyas F. (2003). Concentration dependent mitochondrial effect of amiodarone. Biochem Pharmacol, 65, 1115–28

    CAS  Article  PubMed  Google Scholar 

  8. [8]

    Enomoto R, Komai T, Yoshida Y, Sugahara C, Kawaguchi E, Okazaki K, Kinoshita H. Komatsu H, Konishi Y, Lee E. (2004). Terfenadine induces thymocyte apoptosis via mitochondrial pathway. Eur J Pharmacol, 496, 11–21

    CAS  Article  PubMed  Google Scholar 

  9. [9]

    Piccotti JR, LaGattuta MS, Knight SA, Gonzales AJ, Bleavins MR. (2005). Induction of apoptosis by cationic amphiphilic drugs amiodarone and imipramine. Drug Chem Toxicol, 28, 117–33

    CAS  PubMed  Google Scholar 

  10. [10]

    Agoston M, Cabello RG, Blazovics A, Fehr J, Vereckei A. (2001). The effect of amiodarone and/or antioxidant treatment on splenocyte blast transformation. Clin Chim Acta, 303, 87–94

    CAS  Article  PubMed  Google Scholar 

  11. [11]

    Ray SD, Patel D, Wong U, Bagchi D. (2000). In vivo protection of DNA damage associated apoptotic and necrotic cell deaths during acetaminophen-induced nephrotoxicity, amiodarone-induced lung toxicity and doxorubicin-induced cardiotoxicity by a novel IH 636 grape seed proanthocyanidin extract. Res Commun Mol Pathol Pharmacol, 107, 137–66

    CAS  PubMed  Google Scholar 

  12. [12]

    Agoston M, Orsi F, Feher E, Hagymasi K, Orosz Z, Blazovics A, Feher J, Vereckei A. (2003). Silymarin and vitamin E reduce amiodarone-induced lysosomal phospholipidosis in rats. Toxicology, 190, 231–41

    CAS  Article  PubMed  Google Scholar 

  13. [13]

    Sarma JS, Pei H, Venkataraman K. (1997). Role of oxidative stress in amiodarone-induced toxicity. J Cardiovasc Pharmacol Ther, 2, 53–60

    CAS  Article  PubMed  Google Scholar 

  14. [14]

    Bolt MW, Racz WJ, Brien JF, Massey TE. (2001). Effects of vitamin E on cytotoxicity of amiodarone and desethylamiodarone in isolated hamster lung cells. Toxicology, 166, 109–18

    CAS  Article  PubMed  Google Scholar 

  15. [15]

    Massey TE, Leeder RG, Rafeiro E, Brien JF. (1995). Mechanisms in the pathogenesis of amiodarone-induced pulmonary toxicity. Can J Physiol Pharmacol, 73, 1675–85

    CAS  PubMed  Google Scholar 

  16. [16]

    Hartel C, Strunk T, Bucsky P, Schultz C. (2004). Effects of vitamin C on intracytoplasmic cytokine production in human whole blood monocytes and lymphocytes. Cytokine, 27, 101–6

    CAS  Article  PubMed  Google Scholar 

  17. [17]

    Arrigoni O, De Tullio MC. (2002). Ascorbic acid: much more than just an antioxidant. Biochim Biophys Acta, 1569, 1–9

    CAS  PubMed  Google Scholar 

  18. [18]

    Campbell JD, Cole M, Bunditrutavorn B, Vella AT. (1999). Ascorbic acid is a potent inhibitor of various forms of T cell apoptosis. Cell Immunol, 194, 1–5

    CAS  Article  PubMed  Google Scholar 

  19. [19]

    Wu CC, Doriarajan T, Lin TL. (2000). Effect of ascorbic acid supplementation on the immune response of chickens vaccinated and challenged with infectious bursal disease virus. Vet Immuno Immunopathol, 74, 145–52

    CAS  Article  Google Scholar 

  20. [20]

    Pavlovic V, Cekic S, Kocic G, Sokolovic D, Zivkovic V. (2007a). Effect of monosodium glutamate on apoptosis and Bcl-2/Bax protein level in rat thymocyte culture. Physiol Res, 56, 619–26

    CAS  PubMed  Google Scholar 

  21. [21]

    Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C. (1991). A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods, 139, 271–9

    CAS  Article  PubMed  Google Scholar 

  22. [22]

    Chikahisa L, Oyama Y, Okazaki E, Noda K. (1996). Fluorescent estimation of H2O2-induced changes in cell viability and cellular non-protein thiol level of dissociated rat thymocytes. Jpn J Pharmacol, 71, 299–305

    CAS  Article  PubMed  Google Scholar 

  23. [23]

    Zhang N, Hartig H, Dzhagalov I, Draper D, He YW. (2005). The role of apoptosis in the development and function of T lymphocytes. Cell Res, 15, 749–69

    CAS  Article  PubMed  Google Scholar 

  24. [24]

    Savino W, Dardenne M. (2000). Neuroendocrine control of thymus physiology. Endocr Rev, 21, 412–43

    CAS  Article  PubMed  Google Scholar 

  25. [25]

    Robinson MK, Rodrick ML, Jacobs DO, Rounds JD, Collins KH, Saporoschetz IB, Mannick JA, Wilmore DW. (1993). Glutathione depletion in rats impairs T-cell and macrophage immune function. Arch Surg, 128, 29–34

    CAS  PubMed  Google Scholar 

  26. [26]

    Verma RS, Mehta A, Srivastava N. (2007). In vivo chlorpyrifos induced oxidative stres: attenuation by antioxidant vitamins. Pestic Biochem Phys, 88, 191–6

    CAS  Article  Google Scholar 

  27. [27]

    Meister A. (1994). Glutathione-ascorbic acid antioxidant system in animals. J Biol Chem, 269, 9397–400

    CAS  PubMed  Google Scholar 

  28. [28]

    Puskas F, Gergely P, Banki K, Perl A. (2000). Stimulation of the pentose phosphate pathway and glutathione levels by dehydroascorbate, the oxidized form of vitamin C. Faseb J, 14, 1352–61

    CAS  Article  PubMed  Google Scholar 

  29. [29]

    Hildeman DA, Mitchell T, Aronow B, Wojciechowski S, Kappler J, Marrack P. (2003). Control of Bcl-2 expression by reactive oxygen species. Proc Natl Acad Sci, 100, 15035–40

    CAS  Article  PubMed  Google Scholar 

  30. [30]

    Pavlovic V, Pavlovic D, Kocic G, Sokolovic D, Jevtovic-Stoimenov T, Cekic S, Velickovic D. (2007b). Effect of monosodium glutamate on oxidative stress and apoptosis in rat thymus. Mol Cell Biochem, 303, 161–6

    CAS  Article  PubMed  Google Scholar 

  31. [31]

    Saitoh Y, Ouchida R, Kayasuga A, Miwa N. (2003). Anti-Apoptotic Defense of bcl-2 Gene Against Hydroperoxide-Induced Cytotoxicity Together With Suppressed Lipid Peroxidation, Enhanced Ascorbate Uptake, and Upregulated Bcl-2 Protein. J Cell Biochem, 89, 321–34

    CAS  Article  PubMed  Google Scholar 

  32. [32]

    Pavlovic V, Pavlovic D, Kocic G, Sokolovic D, Sarac M, Jovic Z. (2009). Ascorbic acid modulates monosodium glutamate induced cytotoxicity in rat thymus. Bratisl Lek Listy, 110, 205–9

    CAS  PubMed  Google Scholar 

  33. [33]

    Prakova G, Gidikova P, Slavov E, Sandeva G, Stanilova S. (2009). Serum neopterin in workers exposed to inorganic dust containing free crystalline silicom dioxide. Cent Eur J Med, 4, 104–109

    CAS  Article  Google Scholar 

  34. [34]

    Babusyte A, Jeroch J, Stakauskas R, Salakuskas R. (2009). The production of reactive oxygen species in peripheral blood neutrophilis modulated by airway mucous. Cent Eur J Med, 4, 245–252

    CAS  Article  Google Scholar 

  35. [35]

    Cayir K, Kardeniz A, Yildirim A, Kalkan Y, Karakoc A, Keles M, Tekin SB. (2009). Protective effect of L-karnitine against cisplatin-induced liver and kidney oxidant injury in rats. Cent Eur J Med, 4, 184–191

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. Pavlovic.

About this article

Cite this article

Cekic, S., Pavlovic, D., Sarac, M. et al. The effect of vitamin C on amiodarone-induced toxicity in rat thymocytes. cent.eur.j.med 6, 58–63 (2011). https://doi.org/10.2478/s11536-010-0050-5

Download citation

Keywords

  • Amiodarone
  • Vitamin
  • Thymocytes
  • Apoptosis
  • Glutathione