Advertisement

Central European Journal of Medicine

, Volume 6, Issue 1, pp 89–97 | Cite as

Light-dark dependence of electrocardiographic changes during asphyxia and reoxygenation in a rat model

  • Ivana Bačová
  • Pavol ŠvorcJr.
  • Martin Kundrík
  • Benjamin L. Fulton
Research Article
  • 30 Downloads

Abstract

The aim of this study was to evaluate the effect of ventilation on electrocardiographic time intervals as a function of the light-dark (LD) cycle in an in vivo rat model. RR, PQ, QT and QTc intervals were measured in female Wistar rats anaesthetized with both ketamine and xylazine (100 mg/15 mg/kg, i.m., open chest experiments) after adaptation to the LD cycle (12:12h) for 4 weeks. Electrocardiograms (ECG) were recorded before surgical interventions; after tracheotomy, and thoracotomy, and 5 minutes of stabilization with artificial ventilation; 30, 60, 90 and 120 seconds after the onset of apnoea; and after 5, 10, 15, and 20 minutes of artificial reoxygenation. Time intervals in intact animals showed significant LD differences, except in the QT interval. The initial significant (p<0,001) LD differences in PQ interval and loss of dependence on LD cycle in the QT interval were preserved during short-term apnoea-induced asphyxia (30–60 sec) In contrast, long-term asphyxia (90–120 sec) eliminated LD dependence in the PQ interval, but significant LD differences were shown in the QT interval. Apnoea completely abolished LD differences in the RR interval. Reoxygenation restored the PQ and QT intervals to the pre-asphyxic LD differences, but with the RR intervals, the LD differences were eliminated. We have concluded that myocardial vulnerability is dependent on the LD cycle and on changes of pulmonary ventilation.

Keywords

Chronobiology Asphyxia ECG Myocardium Rat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Henry R., Casto R., Printz M.P., Diurnal cardiovascular patterns in spontaneously hypertensive and Wistar-Kyoto rats, Hypertension., 1990, 16, 422–428PubMedGoogle Scholar
  2. [2]
    Portaluppi F., Hermida R.C., Circadian rhythms in cardiac arrhythmias and opportunities for their chronotherapy, Chronobiol., 2007, 59, 9–10Google Scholar
  3. [3]
    Waterhouse J., Witte K., Huser L., Nevill A., Atkinson G., Reilly T., Lemmer B., Sensitivity of heart rate and blood pressure to spontaneous activity in transgenic rats, Biol. Rhythm. Res., 2000, 31, 146–159CrossRefGoogle Scholar
  4. [4]
    Zhang B.L., Sannajust F., Diurnal rhythmsn of blood pressure, heart rate and locomotor activity in adult and old male Wistar rats, Physiol. Behav., 2000, 70, 375–380CrossRefPubMedGoogle Scholar
  5. [5]
    Švorc P., Beňačka R., Petrášová D., Effect of systemic hypoxia and reoxygenation on electrical stability of the rat myocardium: Chronophysiological study, Physiol. Res., 2005, 54, 319–325PubMedGoogle Scholar
  6. [6]
    Steinbigler P., Haberl R., Jilge G., Steinbeck G., Circadian variability of late potential analysis in Holter electrocardiograms, PACE., 1999, 22, 1448–1456PubMedGoogle Scholar
  7. [7]
    Fries R., Konig J., Schonecke O., Schafers H.J., Bohm M., Daily activities and circadian variation of ventricular tachyarrhythmias in patients with implanted defibrilator, Deut. Med. Wochenschr., 2001, 126, 1385–1390CrossRefGoogle Scholar
  8. [8]
    Taneda K., Aizawa Y., Absence of a morning peak in ventricular tachycardia and fibrillation events in nonischemic heart disease: analysis of therapies by implantable cardioverter defibrillators, PACE., 2001, 24, 1602–1606PubMedGoogle Scholar
  9. [9]
    Fichter J., Bauer D., Arampatzis S., Fries R., Heisel A., Sybrecht G.W., Sleep-related breathing disorders are associated with ventricular arrhythmias in patients with an implantable cardioverter-defibrilator, Chest., 2002, 122(2), 398–399Google Scholar
  10. [10]
    Mehra R., Benjamin E.J., Shahar E., Gottlieb D.J., Nawabit R., Kirchner H.L., Sahadevan J., Redline S., Sleep Heart Health Study: Association of nocturnal arrhythmias with sleep-disordered breathing: The Sleep Heart Health Study, Am. J. Respir. Crit. Care. Med., 2006, 173(8), 910–916CrossRefPubMedGoogle Scholar
  11. [11]
    Arias M.A., Sanches A.M., Obstructive sleep apnea and its relationship to cardiac arrhythmias, J. Cardiovasc. Electr., 2007, 18(9), 1006–1014CrossRefGoogle Scholar
  12. [12]
    Patel N.P., Rosen I., Sleep apnea and cardiovascular disease: association, causation and implication, Clin. Pul. Med., 2007, 14(4), 225–231CrossRefGoogle Scholar
  13. [13]
    Daccarett M., Segerson N.M., Hamdan A.L., Hill B., Hamdan M.H., Relation of daytime bradyarrhythmias with high risk features of sleep apnea, Am. J. Cardiol., 2008, 101(8), 1147–1150PubMedGoogle Scholar
  14. [14]
    Thorman J., Schlepper M., Kramer W., Diurnal changes and reproducibility of corrected sinus node recovery time, Cathet. Cardiovasc. Diagn., 1983, 9, 439–451CrossRefGoogle Scholar
  15. [15]
    Mitsuoka T., Ueyama C., Matsumoto Y., Hashiba K., Influences of autonomic changes on the sinus node recovery time in patients with sick sinus syndrome, Jpn. Heart. J., 1990, 31, 645–660PubMedGoogle Scholar
  16. [16]
    Cinca J., Moya A., Bardaji A., Rius J., Soler J., Circadian variations of electrical properties of the heart. Ann. NY. Acad. Sci., 1990, 601, 222–233CrossRefPubMedGoogle Scholar
  17. [17]
    Kujaník Š., Sninčák M., Vokál J., Podhradský J., Kovaľ J., Periodicity of arrhythmias in healthy elderly men at the moderate altitude, Physiol. Res., 2000, 49, 285–287PubMedGoogle Scholar
  18. [18]
    Štimmelová J., Švorc P., Bračoková I., ECG parameters changes in the dependence on the alteration of light and dark in female Wistar rats, Physiol. Res., 2002, 51, 43Google Scholar
  19. [19]
    Štimmelová J., Švorc P., Bračoková I., Richtáriková Z., Hypoventilation and amplitude changes of ECG in the dependence on the light/dark cycle in female Wistar rats, Physiol. Res., 2004, 53, 38Google Scholar
  20. [20]
    Graf A.V., Maslova M.V., Maklakova A.S., Sokolova N.A., Kudryashova N.Y., Krushinskaya Y.V., Gencharenko E.N., Neverova M.E., Fidelina O.V., Effect of hypoxia during early organogenesis on cardiac activity and noradrenergic regulation in the postnatal period, Bull. Exp. Biol. Med., 2006, 142(5), 543–555CrossRefPubMedGoogle Scholar
  21. [21]
    Overgaard J., Gesser H., Wang T., Tribute To P.L.Lutz., Cardiac performance and cardiovascular regulation during anoxia/hypoxia in freshwater turtles, J. Exp. Biol., 2007, 15, 1687–1699CrossRefGoogle Scholar
  22. [22]
    Švorc P., Bračoková I., Podlubný I., Relation of ventricular fibrillation threshold to heart rate during normal ventilation and hypoventilation in female Wistar rats: a chronophysiological study, Physiol. Res., 2000, 49, 711–719PubMedGoogle Scholar
  23. [23]
    Bishop B., Silva G., Krasney L., Salloum A., Roberts A., Nakano H., Shucard D., Rifkin D., Farkas G., Circadian rhythms of body temperature and activity levels during 63 h of hypoxia in the rat, Am. J. Physiol., 2000, 279, 1378–1385Google Scholar
  24. [24]
    Jarsky T.M., Stephenson R., Effect of hypoxia and hypercapnia on circadian rhythms in the golden hamster, J. Appl. Physiol., 2000, 89, 2130–2138PubMedGoogle Scholar
  25. [25]
    Kujaník Š., Wilk P., Tomčová D., Changes in the vulnerable period of the rat myocardium during hypoxia, hyperventilation and heart failure, Physiol Bohemoslov., 1984, 33, 470–480PubMedGoogle Scholar
  26. [26]
    Tomori Z., Beňačka R., Tkáčová R., Donič V., Disorders of heart rhythm and ECG changes in experimental apnoeic states, Bratisl. Lek. Listy., 1997, 98, 531–538PubMedGoogle Scholar
  27. [27]
    Tomori Z., Beňačka R., Donič V., Jakuš J., Contribution of upper airway reflexes to apnoea reversal, arousal, and resuscitation, Monaldi. Arch. Chest. Dis., 2000, 55, 398–403Google Scholar
  28. [28]
    Surawicz B., Ventricular fibrillation and dispersion of repolarization, J. Cardiovasc. Electrophysiol., 1997, 8, 1009–1012CrossRefPubMedGoogle Scholar
  29. [29]
    Han J., Moe G.K., Nonuniform recovery of excitability in ventricular muscle, Circ. Res., 1964, 14, 44–60PubMedGoogle Scholar
  30. [30]
    Han J., deJalon G. P., Moe G. K., Adrenergic effects on ventricular vulnerability, Circ. Res., 1964, 14, 516–524PubMedGoogle Scholar
  31. [31]
    Han J., deJalon G. P., Moe G.K., Fibrillation threshold of premature ventricular responses, Circ. Res., 1966, 18, 18–25PubMedGoogle Scholar
  32. [32]
    Ohoi I., Takeo S., Involvement of superoxide and nitric oxide in the genesis of reperfusion arrhythmias in rats, Eur. J. Pharmacol., 1996, 306, 123–131CrossRefPubMedGoogle Scholar
  33. [33]
    Tanno K., Kobayashi Y., Adachi T., Ryu S., Asano T., Obara C., Baba T., Katagiri T., Onset heart rate and microvolt t-wave alternans during atrial pacing, Am. J. Cardiol., 2000, 86, 877–880CrossRefPubMedGoogle Scholar
  34. [34]
    Prudian F., Gantenbein M., Pelissier A.L., Attolini L., Bruguerolle B., Daily rhythms of heart rate temperature and locomor activity are modified by anaesthetics in rats: a telemetric study, NS Arch. Pharmacol., 1997, 355, 774–778CrossRefGoogle Scholar
  35. [35]
    Pelissier A.L., Gantenbein M., Prudian F., Bruguerolle B., Influence of general anaesthetics on circadian rhythms of heart rate, body temperature and locomotor activity in rats, Sci. Tech. Anim. Lab., 1998, 23, 91–98Google Scholar
  36. [36]
    Gantenbein M., Attolini L., Bruguerolle B., Nicorandil affect diurnal rhythms of body temperature, heart rate and locomotor activity in rats, Eur. J. Pharmacol., 1998, 346, 125–130CrossRefPubMedGoogle Scholar
  37. [37]
    Hsu W. H., Bellin S.I., Dellmann H. D., Habil V., Hanson C. E., Xylasine-ketamine-induced anaesthesia in rats and its antagonism by yohimbine, Jamma., 1986, 189, 1040–1043Google Scholar
  38. [38]
    Cope D. K., Impastato W. K., Cohen M. V., Downey J. M., Volatile anaesthetics protect the ischemic rabbit myocardium from infarction, Anaesthesiology, 1998, 86, 699–709CrossRefGoogle Scholar
  39. [39]
    Morita Y., Murakami T., Iwase T., Nagai K., Nawada R., Kouchi I, Akao M., Sasayama S., KATP channels contribute to the cardioprotection of preconditioning independent of anaesthesia in rabbit heart, J. Mol. Cell. Cardiol., 1997, 29, 1267–1276CrossRefPubMedGoogle Scholar
  40. [40]
    Švorc P., Bračoková I., Bačová I., Švorcová E., Acid-base balance and artifitial controlled ventilation in Wistar rats, Chronobiological view, Abstract book from The third International Congress of Applied Chronobiology and Chronomedicine, Akko Israel, 2009, 67Google Scholar
  41. [41]
    Carmeliet E., The slow inward current: nonvoltage-clamp studies. In: The slow invard current and cardiac arrhythmias. (Eds.) E. Anries, R. Stroobandt, Elsevier Science Publishers B. V., 1986, 9–20Google Scholar
  42. [42]
    Amitzur G., Schoels W., Visokovsky A., Lev-ran V., Novikov I., Mueller M., Kraft P., Kaplinsky E., Eldar M., Role of sodium channels in ventricular fibrillation: A study in nonischemic isolated hearts, J. Cardiovasc. Pharmacol., 2000, 36, 785–793CrossRefPubMedGoogle Scholar
  43. [43]
    Gunes Y., Tuncer M., Guntekin U., Akdag S., Gumrukcuoglu H.A, Lacko f diurnal variation of P-wave and QT dispersions in patients with heart failure, Pace., 2008, 31(8), 974–978PubMedGoogle Scholar
  44. [44]
    Froldi G., Pandolfo L., Chinellato A., Ragazzi E., Caparrotta L., Fassina G., Protection of atrial function in hypoxia by high potassium concentration, Gen. Pharmacol., 1994, 25, 401–407PubMedGoogle Scholar
  45. [45]
    Cutler M.J., Hamdam A.L., Hamdam M.H., Ramaswamy K., Smith M.L, Sleep apnea: from the nose to the heart, J. Am. Board. Fam. Pract., 2002, 15(2), 128–141PubMedGoogle Scholar
  46. [46]
    Yamashita J., Nomura M., Uehara K., Nakaya Y., Uemura E., Iga A., Sawa Y., Nishikado A., Saito K., Ito S., Influence of sleep apnea on autonomic nervous activity and QT dispersion in patients with essential hypertension and old myocardial infarction, Electrocardiol., 2004, 37(1), 31–40CrossRefGoogle Scholar
  47. [47]
    Bounhoure J.P., Galinier M., Didier A., Leophonte P., Sleep apnea syndromes and cardiovascular disease, Bull. Acad. Natl. Med., 2005, 189(3), 445–459PubMedGoogle Scholar
  48. [48]
    Dunai A., Musci I., Juhasz J., Novak M., Obstructive sleep apnea andcardiovascular disease, Orv. Hetil., 2006, 147(48), 2303–2311PubMedGoogle Scholar
  49. [49]
    Bayram N.A., Diker E., Obstructive sleep apnea syndrome and cardiac arrhythmias, Turk. Kardiyol. Dern. Ars., 2008, 36(1), 44–50PubMedGoogle Scholar
  50. [50]
    Grešová S., Tomori Z., Kurpas M., Marossy A., Vrbenska A., Kundrik M., Donic V., Blood pressure increase detected by ambulatory monitoring cerrelates with hypoxemia reflecting sleep apnea severity, Cent. Eur. J. Med., 2009, 4, 222–232CrossRefGoogle Scholar
  51. [51]
    Mortola J.P., Hypoxia and circadian patterns, Respir. Physiol. Neurobiol., 2007, 158(2–3), 274–279CrossRefPubMedGoogle Scholar
  52. [52]
    Nishimura M., Tanaka H., Homma N., Matsuzawa Y., Ionic mechanisms of the depression of automaticity and conduction in the rabbit atrioventricular node caused by hypoxia or metabolic inhibition and protective action of glucose and valine, Amer. J. Cardiol., 1989, 64, 24J–28JCrossRefPubMedGoogle Scholar
  53. [53]
    Sawanobori T., Adaniya H., Yukisada H., Hiraoka M., Role for ATP-sensitive K+ channel in the development of A-V block during hypoxia, J. Mol. Cell. Cardiol., 1995, 27, 647–657CrossRefPubMedGoogle Scholar
  54. [54]
    Xu J., Wang L., Hurt C.M., Pelleg A., Endogenous adenosine does not activate ATP-sensitive pottasium channels in the hypoxic guinea pig ventricle in vivo, Circulation., 1994, 89, 1209–1216PubMedGoogle Scholar
  55. [55]
    Leone R., Jr., Merrill G. F., Inhibition of adenosine deaminase and administration of adenosine increase hypoxia induced ventricular ectopy, Basic. Res. Cardiol., 1995, 90, 234–239CrossRefPubMedGoogle Scholar
  56. [56]
    Perchenet L., Kreher P., Mechanical and electrophysiological effects of preconditioning in isolated ischemic/reperfused rat heart, J. Cardiovasc. Pharmacol., 1995, 26, 831–840CrossRefPubMedGoogle Scholar
  57. [57]
    Bugge E., Gamst T.M., Hegstad A.C., Andreasen T., Ytrehus K., Mepacrine protects the isolated rat heart during hypoxia and reoxygenation - but not by inhibition of phospholipase A2, Basic. Res. Cardiol., 1997, 92, 17–24PubMedGoogle Scholar
  58. [58]
    Griffiths E.J., Ocampo C.J., Savage J.S., Stern M.D., Silverman H.S., Protective effects of low and high doses of cyclosporin A against reoxygenation injury in isolated rat cardiomyocytes are associated with differrential effects on mitochondrial calcium levels, Cell. Calcium., 2000, 27, 87–95CrossRefPubMedGoogle Scholar
  59. [59]
    Mukai M., Terada H., Sugiyama S., Satoh H., Hayashi H., Effects of a selective inhibitor of Na+/Ca2+ exchange, KB-R7943, on reoxygenation - induced injuries in Guinea pig papillary muscles, J. Cardiovasc. Pharmacol., 2000, 35, 121–128CrossRefPubMedGoogle Scholar
  60. [60]
    Lubbe W.F., Bricknell O.L., Marzagao C., Ventricular fibrillation threshold and vulnerable period in the isolated perfused rat heart, Cardiovasc. Res., 1975, 9, 613–620CrossRefPubMedGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ivana Bačová
    • 1
  • Pavol ŠvorcJr.
    • 1
  • Martin Kundrík
    • 1
  • Benjamin L. Fulton
    • 2
  1. 1.Department of Physiology, Medical FacultyŠafarik UniversityKošiceSlovak Republic
  2. 2.Nasophlex Slovakia, s.r.o.KošiceSlovak Republic

Personalised recommendations