Advertisement

Central European Journal of Medicine

, Volume 5, Issue 5, pp 527–534 | Cite as

Early diagnosis of acute kidney injury

  • Marius G. Dehne
  • Bernd Hartmann
  • Christian Katzer
  • Rainer Röhrig
Research Article
  • 56 Downloads

Abstract

There is a considerable lack of data concerning the diagnostic testing for kidney damage after surgical procedures. In this situation the most important variables should be examined with respect to their clinical informative value, the costs associated with their analysis, and their potential use in routine diagnostic testing. Forty patients in the surgical intensive care unit (ICU) with acute kidney injury (AKI) that developed during their stay of 13–18 (median, 16) days in the ICU were examined daily during their entire ICU admission. The bulk of the laboratory research consisted of the measurement of creatinine, urea, and sodium, as well as clearances rates and diuresis. Various tests for diagnosing regional renal damage (enzymes and proteins) were also carried out. The included photometry, nephelometric analysis, and ELISA (enzyme-linked immunosorbent assay). Five days before an AKI became evident, pathologic levels of urinary α1-microglobulin (tubular parameter) could already be confirmed. Serum creatinine values or creatinine clearance indicated the presence of disease only 1 day before the AKI was seen. Our results show that determination of α1-microglobulin and immunoglobulin G (glomerular parameter) levels, in addition to the level of urea in serum, be recommended for patients in surgical intensive care units who are at risk for AKI. Use of these procedures can achieve early recognition and sufficiently precise localization of renal damage.

Keywords

Acute kidney injury Proteinuria Histuria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Byrick R.J., Rose D.K.: Pathophysiology and prevention of acute renal failure: The role of the anaesthesist, Can. J. Anaesth. 1990, 37,457–467CrossRefPubMedGoogle Scholar
  2. [2]
    Sural S., Sharma R.K., Singhal M., Sharma A.P., Kher V., Arora P., Gupta A., Gulati S.: Etiology, prognosis, and outcome of post-operative acute renal failure, Ren. Fail. 2000, 1,87–97Google Scholar
  3. [3]
    Pickering J.W., Endre Z.H.: Secondary prevention of acute kidney injury, Curr. Opin. Crit. Care 2009, 15(6),488–497CrossRefPubMedGoogle Scholar
  4. [4]
    Bellomo R., Ronco C., Kellum J.A., Mehta R.L., Palevsky P., Acute Dialysis Quality Initiative workgroup. Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group, Crit. Care 2004, 8(4), 204–212CrossRefGoogle Scholar
  5. [5]
    Kellum J.A., Acute kidney injury, Crit. Care Med. 2008, 36(4),141–145CrossRefGoogle Scholar
  6. [6]
    Kellen M., Aronson S., Roizen M., Barnard J., Thisted R., Predictive and Diagnostic Tests of Renal Failure: A Review, Anesth. Analg. 1994, 78,134–142CrossRefPubMedGoogle Scholar
  7. [7]
    Dati F., Lammers M., Immunochemical Methods for Determination of Urinary Proteins in Kidney Disease, J. Fed. Clin. Chem. 1989, 1,68–77Google Scholar
  8. [8]
    Simane Z.J., N-Acetyl-b-D-Glucosaminidase; in Jung K, Mattenheimer H, Burchardt U (eds), Urinary Enzymes in Clinical and Experimental Medicine, Berlin, Springer, 1992, pp118–124Google Scholar
  9. [9]
    Scherberich J.E., Aminopeptidase A (Angiotensinase A), in Jung K, Mattenheimer H, Burchardt U (eds), Urinary Enzymes in Clinincal and Experimental Medicine. Berlin, Springer, 1992, pp 116–112Google Scholar
  10. [10]
    Szczech L.A., The development of urinary biomarkers for kidney disease is the search for our renal troponin, J Am. Soc. Nephrol. 2009, 20(8),1656–1657CrossRefPubMedGoogle Scholar
  11. [11]
    Dixon B.S., Anderson R.J., Nonoliguric acute renal failure, Am. J. Kidney Dis. 1985, 6,71–80PubMedGoogle Scholar
  12. [12]
    Hartl W.H., Jauch K.W., Post-aggression metabolism: attempt at a status determination, Infusionsther. Transfusionsmed. 1994, 2,30–40Google Scholar
  13. [13]
    Lynn K.L., Marshall R.D., Excretion of Tamm-Horsfall glycoprotein in renal disease, Clin. Nephrol. 1984, 22,253–257PubMedGoogle Scholar
  14. [14]
    Itoh Y., Enomoto H., Takagi K., Kawai, T., Clinical usefulness of serum alpha 1-microglobulin as a sensitive indicator for renal insufficiency, Nephron 1983, 33,69–70CrossRefPubMedGoogle Scholar
  15. [15]
    Wedeen R.P., Udasin I., Fiedler N., Urinary biomarkers as indicators of renal disease, Ren. Fail. 1999, 21,241–249CrossRefPubMedGoogle Scholar
  16. [16]
    Wolf G., Thaiss F., Scherberich J.E., Schoeppe W., Stahl R.A., Glomerular angiotensinase A in the rat: increase of enzyme activity following renal ablation, Kidney Int. 1990, 38,862–868CrossRefPubMedGoogle Scholar
  17. [17]
    Hotta O., Sugai H., Kitamura H., Yusa N., Taguma Y., Predictive value of urinary microcholesterol (mCHO) levels in patients with progressive glomerular disease. Kidney Int. 2004, 66,2374–2381CrossRefPubMedGoogle Scholar
  18. [18]
    Higuchi H., Adachi Y., Renal function in surgical patients after administration of low-flow sevoflurane and amikacin, J. Anesth. 2002, 16,17–22CrossRefPubMedGoogle Scholar
  19. [19]
    Scherberich J.E., Wolf G., Albers C., Nowack A., Stuckhardt C., Schoeppe W., Glomerular and tubular membrane antigens reflecting cellular adaptation in human renal failure, Kidney Int. Suppl. 1989, 27,38–51Google Scholar
  20. [20]
    Mueller P.W., MacNeil M.L., Steinberg K.K., Stabilization of alanine aminopeptidase, gammaglutamyltransferase and N-acetyl-beta-D-glucosaminidase in normal urine, Arch. Environ. Contam. Toxicol. 1986, 15,343–358CrossRefPubMedGoogle Scholar
  21. [21]
    Mattenheimer H., Frolke W., Grotsch H., Mahrun D., Simane Z.J., Recommendation for the measurement of “alanine aminopeptidase” in urine, J. Clin. Chem. Clin. Biochem. 1988, 26,635–644PubMedGoogle Scholar
  22. [22]
    Dehne M.G., Mühling J., Papke G., Nopens H., Kuntzsch U., Hempelmann G., Unrecognized renal damage in critically ill patients, Ren. Fail. 1999, 21,695–706CrossRefPubMedGoogle Scholar
  23. [23]
    Teppo A. M., von Willebrand E., Honkanen E., Ahonen J., Gronhagen-Riska C., Soluble intercellular adhesion molecule-1 (sICAM-1) after kidney transplantation: the origin and role of urinary sICAM-1? Transplantation 2001, 71,1113–1119CrossRefPubMedGoogle Scholar
  24. [24]
    Gauer S., Yao J., Schoecklmann H.O., Sterzel R.B., Adhesion molecules in the glomerular mesangium, Kidney Int. 1997, 51,1447–1453CrossRefPubMedGoogle Scholar
  25. [25]
    Gobé Glenda C., Willgoss D., Hogg N., Schoch E., Endre Z., Cell survival or death in renal tubular epithelium after ischemia-reperfusion injury, Kidney Int. 1999, 56,1299–1304CrossRefGoogle Scholar
  26. [26]
    Rothlein R., Kennedy C., Czajkowski M., Barton R.W., Generation and characterization of an antiidiotypic antibody specific for intercellular adhesion molecule-1, Int. Arch. Allergy Immunol. 1993, 100,121–127CrossRefPubMedGoogle Scholar
  27. [27]
    Bechtel U., Scheuer R., Landgraf R., Konig A., Feucht H.E., Assessment of soluble adhesion molecules (sICAM-1, sVCAM-1, sELAM-1) and complement cleavage products (sC4d, sC5b-9) in urine. Clinical monitoring of renal allograft recipients, Transplantation 1994, 58,905–911CrossRefPubMedGoogle Scholar
  28. [28]
    Gearing A.J.H., Hemingway I., Pigott R., Hughes J., Rees A.J., Cashman S.J., Soluble forms of vascular adhesion molecules, E-selectin, ICAM-1, and VCAM-1: Pathological significance, Ann. N. Y. Acad. Sci. 1992, 667,324–331CrossRefPubMedGoogle Scholar
  29. [29]
    Bevilacqua M.P., Stengelin S., Gimbrone M.A. Jr, Seed B., Endothelial Leukocyte Adhesion Molecule 1: An Inducible Receptor for Neutrophils Related to Complement Regulatory Proteins and Lectins, Science 1989, 243,1160–1164CrossRefPubMedGoogle Scholar
  30. [30]
    Kelly K. J., Williams W.W., Colvin R.B., Meehan S.M., Springer T.A., Guiterrez-Ramos J.C., Bonventre J.V., Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury, J. Clin. Invest. 1996, 97,1056–1062CrossRefPubMedGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Marius G. Dehne
    • 1
  • Bernd Hartmann
    • 2
  • Christian Katzer
    • 2
  • Rainer Röhrig
    • 2
  1. 1.Department of Anesthesiology, Intensive Care Medicine, Emergency medicine and pain therapyHospital WittlichWittlichGermany
  2. 2.Staff Anesthesiologist, Department of Anesthesiology and Intensive Care MedicineJustus-Liebig-University GiessenGiessenGermany

Personalised recommendations