Central European Journal of Medicine

, Volume 5, Issue 1, pp 12–29 | Cite as

Surmounting antimicrobial resistance in the Millennium Superbug: Staphylococcus aureus

Review Article
  • 163 Downloads

Abstract

Staphylococcus aureus is the third most dreaded pathogen posing a severe threat due to its refractory behavior against the current armamentarium of antimicrobial drugs. This is attributed to the evolution of an array of resistance mechanisms responsible for morbidity and mortality globally. Local and international travel has resulted in the movement of drug resistant S. aureus clones from hospitals into communities and further into different geographical areas where they have been responsible for epidemic outbreaks. Thus, there is a dire necessity to refrain further cross movement of these multidrug resistant clones across the globe. The plausible alternative to prevent this situation is by thorough implementation of regulatory aspects of sanitation, formulary usage and development of new therapeutic interventions. Various strategies like exploring novel antibacterial targets, high throughput screening of microbes, combinatorial and synthetic chemistry, combinatorial biosynthesis and vaccine development are being extensively sought to overcome multidrug resistant chronic Staphylococcal infections. The majority of the antibacterial drugs are of microbial origin and are prone to being resisted. Anti-staphylococcal plant natural products that may provide a new alternative to overcome the refractory S.aureus under clinical settings have grossly been unnoticed. The present communication highlights the new chemical entities and therapeutic modalities that are entering the pharmaceutical market or are in the late stages of clinical evaluation to overcome multidrug resistant Staphylococcal infections. The review also explores the possibility of immunity and enzyme-based interventions as new therapeutic modalities and highlights the regulatory concerns on the prescription, usage and formulary development in the developed and developing world to keep the new chemical entities and therapeutic modalities viable to overcome antimicrobial resistance in S. aureus.

Keywords

S. aureus MRSA Vaccines MDR Rational drug design Combinatorial biosynthesis Enzymibiotics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Peacock S.J., de Silva I., Lowy F.D., What determines the nasal carriage of Staphylococcus aureus?, Trends Microbiol., 2001, 9, 605–610PubMedCrossRefGoogle Scholar
  2. [2]
    Pettit C.A., Fowler V.G., Staphylococcus aureus bacteremia and endocarditis, Cardiology Clinics, 2003, 21(2), 219–233CrossRefGoogle Scholar
  3. [3]
    Fang G., Keys T.F., Gentry L.O., Harris A.A., Rivera N., Getz K. et al., Prosthetic valve endocarditis resulting from nosocomial bacteremia. A prospective, multicenter study, Ann. Intern. Med.,1993, 119(7), 560–567PubMedGoogle Scholar
  4. [4]
    Jevons, M.P., Celbenin-resistant staphylococci., Br. Med. J.,1961,1,124–125CrossRefGoogle Scholar
  5. [5]
    Parker M.T., Hewitt J.H., Methicillin resistance in Staphylococcus aureus, Lancet,1970,1, 800–804PubMedCrossRefGoogle Scholar
  6. [6]
    Ogston A., Micrococcus poisoning., J. Anal. Physiol.,1883,17 24–58Google Scholar
  7. [7]
    Skinner D., Keefer C.S., Significance of bacteremia caused by Staphylococcus aureus., Arch. Intern. Med.,1941,68, 851–875Google Scholar
  8. [8]
    Archer G.L., Scott G., Conjugative transfer genes in Staphylococcal isolates from the United States, Antimicrob. Agents Chemother.,1991, 33, 2500–2504Google Scholar
  9. [9]
    Trucksis M., Hooper D.C., Wolfson J.S., Emerging resistance to Fluoroquinolones in Staphylococci, Ann. Intern. Med., 1991, 114, 424–426PubMedGoogle Scholar
  10. [10]
    Lacey R.W., Mitchell A.A.B., Gentamicin-resistant Staphylococcus aureus, Lancet, 1969, II, 1425–1426CrossRefGoogle Scholar
  11. [11]
    Lowy F.D., Staphylococcus aureus infections, N. Engl.J. Med.,1998, 339, 520–532PubMedCrossRefGoogle Scholar
  12. [12]
    Moellering R.C. Jr., Problems with antimicrobial resistance in gram-positive cocci, Clin. Infect. Dis., 1998, 26,1177–1178PubMedCrossRefGoogle Scholar
  13. [13]
    Lelievre H., Lina G., Jones M.E., Olive C., Forey F., Roussel-Delvallez M., et al., Emergence and Spread in French Hospitals of Methicillin-Resistant Staphylococcus aureus with Increasing Susceptibility to Gentamicin and Other Antibiotics. J. Clin. Microbiol.,1999, 11, 3452–3457Google Scholar
  14. [14]
    Mulligan M.E., Ruane P.J., Johnston L., Wong P., Wheelock J.P., MacDonald K.,et al. Ciprofloxacin for eradication of methicillin-resistant Staphylococcus aureus colonization. Am. J. Med.,1987,82(4A), 215–219PubMedGoogle Scholar
  15. [15]
    Harnett N., Brown S., Krishnan C., Emergence of Quinolone Resistance among Clinical Isolates of Methicillin-Resistant Staphylococcus aureus in Ontario, Canada, Antimicrob. Agents Chemother.,1991,35(9),1911–1913Google Scholar
  16. [16]
    Kuehnert M.J., Hill H.A., Kupronis B.A., Tokars J.I., Solomon S.L., Jernigan D.B., Methicillin-resistant Staphylococcus aureus-related hospitalizations, United States. Emerg.Infect. Dis.,2005,11:868–872PubMedGoogle Scholar
  17. [17]
    Hiramatsu K., Vancomycin-resistant Staphylococcus aureus: a new model of antibiotic resistance, Lancet Infect. Dis.,2001,1(3),147–155PubMedCrossRefGoogle Scholar
  18. [18]
    Hiramatsu, K., Reduced susceptibility of Staphylococcus aureus to vancomycin — Japan 1996, Morb. Mortal. Wkly. Rep.,1997,27,624–626Google Scholar
  19. [19]
    Centers for Disease Control and Prevention S. aureus resistant to Vancomycin in the US, Morb. Mortal. Wkly. Rep., 2002, 51, 565–567Google Scholar
  20. [20]
    Centers for Disease Control and Prevention, Vancomycin resistant S. aureus Pennysylvania 2002, Morb. Mortal. Wkly. Rep.,2002, 51, 902Google Scholar
  21. [21]
    Riley T.V., Pearman J.W., Rouse I.L., Changing epidemiology of methicillin-resistant Staphylococcus aureus in Western Australia, Med. J. Aust.,1995, 163,412–414PubMedGoogle Scholar
  22. [22]
    Cookson B.D., Methicillin-resistant Staphylococcus aureus in the community: new battlefronts, or are the battles lost?, Infect. Control Hosp. Epidemiol., 2000, 21, 398–403PubMedCrossRefGoogle Scholar
  23. [23]
    Chambers H.F., Community associated Methicillin resistant Staphylococcus aureus- resistance and virulence coverage. N. Engl. J. Med., 2005, 325, 1485–1487CrossRefGoogle Scholar
  24. [24]
    Moran G.J., Krishnadasan A., Gorwitz R.J. Fosheim G.E., McDougal L.K., Carey R.B. et al., Methicillin resistant S. aureus infections among patients in the emergency department, N. Engl. J Med., 2006, 355, 666–674PubMedCrossRefGoogle Scholar
  25. [25]
    Moreno F., Crisp F., Jorgenson J.H., Patterson and Patterson J.E., Methicillin-resistant Staphylococcus aureus as a community organism,Clin. Infect. Dis., 1995, 21, 1308–1312.PubMedGoogle Scholar
  26. [26]
    Bukharie H.A., Abdelhadi M.S., Saeed I.A., Rubaish A.M., Larbi E.B., Emergence of methicillin- resistant Staphylococcus aureus as a community pathogen. Diagn.Microbiol.Infect.Dis., 2001, 40,1–4PubMedCrossRefGoogle Scholar
  27. [27]
    Salgado C.D., Farr B.M., Calfee D.P., Community acquired methicillin-resistant Staphylococcus aureus: A meta-analysis of prevalence and risk factors, Clin.Infect. Dis., 2003, 36, 131–139PubMedCrossRefGoogle Scholar
  28. [28]
    Adcock P.M., Pator P., Medly F., Patterson J.E., Murphy T.V., Methicillin-resistant Staphylococcus aureus in two child care centers, J. Infect. Dis., 1998, 178, 577–580PubMedGoogle Scholar
  29. [29]
    Lindenmayer J.M., Schoenfeld S., O’Grady R., Carney J.K., Methicillin-resistant Staphylococcus aureus in a high school wrestling team and the surrounding community, Arch.Intern. Med.,1998,158, 895–899PubMedCrossRefGoogle Scholar
  30. [30]
    Centers for Disease Control and Prevention. Outbreaks of community-associated methicillin-resistant Staphylococcus aureus skin infections—Los Angeles County, California, 2002–2003, Morb. Mortal. Wkly. Rep., 2003, 52, 88Google Scholar
  31. [31]
    Cohen P.R., Kurzrock R., Community-acquired methicillin-resistant Staphylococcus aureus skin infection: an emerging clinical problem, J. Am. Acad. Dermatol., 2004, 50,277–280PubMedCrossRefGoogle Scholar
  32. [32]
    Olayinka B.O., Olnitola O.S., Olayinka A.T., Raji B., Antibiotic susceptibility pattern and multiple antibiotic resistance wider of S. aureus isolates in Zaria, Nigeria, J. Trop. Biosci., 2004, 451–454Google Scholar
  33. [33]
    Kowalski T.J., Berbari E.F., Osmon D.R., Epidemiology, treatment and prevention of community acquired methicillin resistant Staphylococcus aureus infections, Mayo Clin. Proc., 2005, 80(9), 1201–1208PubMedCrossRefGoogle Scholar
  34. [34]
    Francis J.S., Doherty M.C., Lopatin U., Johnston C.P., Sinha G., Ross T., Severe community onset pneumonia in healthy adults caused by methicillin resistant Staphylococcus aureus carrying panton valentine leukocidin genes, Clin. Infect. Dis.,2005, 40(1),100–107PubMedCrossRefGoogle Scholar
  35. [35]
    O’Brien F.G., Pearman J.W., Gracey M., Riley T.V., Grubb W.B., Community strains of MRSA involved in hospital outbreak, J. Clin. Microbiol. 1999, 37(9), 2858–2862PubMedGoogle Scholar
  36. [36]
    Pelag A.Y. and Munckhof W.J., Fatal necrotizing pneumonias due to community acquired Methicillin resistant Staphylococcus aureus, Med. J. Aus., 2004,181(4), 228–229Google Scholar
  37. [37]
    Klevens M.R., Morrison A., Nadle J., Petit S., Gershman K., Ray S. et al., Invasive Methicillin resistant Staphylococcus aureus infections in the United States, JAMA, 2007, 298,1763–1771PubMedCrossRefGoogle Scholar
  38. [38]
    Fuda C., Suvorov M., Vakulenko S.B., Mobashrey S., The Basis for Resistance to β-Lactam antibiotics by Penicillin-binding Protein2a of Methicillin-resistant Staphylococcus aureus, J. Biol. Chem., 2004, 279(39): 40802–40806PubMedCrossRefGoogle Scholar
  39. [39]
    Brown D.F.J., Reynolds P.E., Intrinsic resistance to beta-lactam antibiotics in Staphylococcus aureus. FEBS Lett.,1980,122,275–278PubMedCrossRefGoogle Scholar
  40. [40]
    Hartman B.J., Tomasz, A., Low-affinity penicillin binding protein associated with β-lactam resistance in Staphylococcus aureus. J. Bacteriol.,1984,58, 513–516Google Scholar
  41. [41]
    Georgopapadakou N.H., Dix B.A., Mauriz, Y.R., Possible physiological functions of penicillin-binding proteins in Staphylococcus aureus, Antimicrob. Agents Chemother., 1986; 29, 333–336PubMedGoogle Scholar
  42. [42]
    Utsui Y., Yokota T., Role of altered penicillin binding protein in methicillin and cepham resistant Staphylococcus aureus. Antimicrob. Agents Chemother., 1985, 28, 397–403PubMedGoogle Scholar
  43. [43]
    Song M.D., Wachi M., Doi M., Ishino F., Matsuhashi M., Evolution of inducible penicillin resistant target protein in methicillin resistant S. aureus by gene fusion, FEBS Lett.,1987,221, 167–171PubMedCrossRefGoogle Scholar
  44. [44]
    Walsh T.R., Howe R.A., The prevalence and mechanisms of vancomycin resistance in Staphylococcus aureus, Ann. Rev. Microbiol., 2002, 56, 657–75CrossRefGoogle Scholar
  45. [45]
    Chopra I., Antibiotic resistance in Staphylococcus aureus: Causes, concerns and cures?, Exp. Rev. Ant. Infect. Ther., 2003, 1(1), 45–55CrossRefGoogle Scholar
  46. [46]
    Weisblum B., Erythromycin resistance by ribosome modification, Antimicrob. Agents Chemother., 1995,39,577–585PubMedGoogle Scholar
  47. [47]
    Ross J.I., Eady E.A., Cove J.H., Canliffe W.J., Cunliffe W.J., Baumberg S., Wootton J.C., Inducible erythromycin resistance in Staphylococci is encoded by a member of ATP binding transport supergene family, Mol. Microbiol.,1990, 4, 1207–1214PubMedCrossRefGoogle Scholar
  48. [48]
    Saxena, S., Combating multidrug resistance microbes: A burgeoning problem In Microbes & Human Health, Vol.4, 2007; Edited by Dr. A.K. Chauhan, Dr.Harsha Kharkwal & Dr. Ajit Varma,pp.589–607,I.K.International Publishing House, New Delhi,India ISBN81-89866-05-02Google Scholar
  49. [49]
    Bismuth R., Zilhao R., Sakamoto H. Guesdon J.L., Courvalin P., Gene heterogeneity for tetracycline resistance in Staphylococcus spp. Antimicrob. Agents Chemother., 1990,34,1611–1614PubMedGoogle Scholar
  50. [50]
    Warsa U.C., Nonoyama M., Ida T., Okamoto R., Okubo T., and Shimauchi C., et.al., Detection of tet (K) and tet(M) in Staphylococcus aureus of Asian countries by Polymerase chain reaction, J. Antibiot., 1996, 49(11),1127–1132PubMedGoogle Scholar
  51. [51]
    Trzcinski K., Cooper B.S., Hryniewicz W., Dawson C.G., Expression of resistance to tetracyclines in strains of methicillin- resistant Staphylococcus aureus, J. Antimicrob. Chemother., 2000, 45, 763–770PubMedCrossRefGoogle Scholar
  52. [52]
    Schimtz, F.J., Angela K., Sadurski, R., Milatovic D, Fluit A.C., et al. Resistance to tetracycline and distribution of tetracycline resistance genes in European Staphylococcus aureus isolates. J. Antimicrob. Chemother., 2001, 47, 239–240CrossRefGoogle Scholar
  53. [53]
    Shinabarger D.L., Marotti K.R., Murray R.W., Lin A.H., Melchior E.P., Swaney S.M. et al. Mechanisms of actions of oxazlidinones: effects of linezolid and eperezolid on translation reactions. Antimicrob. Agents Chemother., 1997, 41, 2132–2136PubMedGoogle Scholar
  54. [54]
    Tsiodras S., Gold H.S., Sakouloulas G., Eliopoulos P.M., Wennersten C., Venkataraman L., et al., Linezolid resistance in a clinical isolate of Staphylococcus aureus, Lancet, 2001, 358, 207–208PubMedCrossRefGoogle Scholar
  55. [55]
    Kloss P., Xiong L., Shinabarger D.L., Mankin, A.S. Resistance mutations in 23 S rRNA identify the site of action of the protein synthesis inhibitor linezolid in the ribosomal peptidyl transferase center, J. Mol. Biol.,1999, 294(1), 93–101PubMedCrossRefGoogle Scholar
  56. [56]
    Vanuffel P., Giambattista Di M., Cocito, C., Chemical probing of virginiamycin M -promoted conformational change of the peptidyltransferase domain, Nuc. Acids Res.,1994, 22, 4449–4453CrossRefGoogle Scholar
  57. [57]
    Mitchell B.A., Brown M.H., Skurray, R.A., Qac A efflux pumps from Staphylococcus aureus: Comparative analysis of resistance to diamidines, biguanidines and guanylhydrazones, Antimicrob. Agents Chemother., 1998, 42, 475–471PubMedCrossRefGoogle Scholar
  58. [58]
    Walmsley M.B., Mckeegan K.S., Walmsley, A.R., Structure and function of efflux pumps that confer resistance to drugs, Biochem. J.,2003, 376,313–338PubMedCrossRefGoogle Scholar
  59. [59]
    Allignet J., Solh N.El., Characterization of a new staphylococcal gene, vga B, encoding a putative ABC transfer conferring resistance to streptogramin A and related compounds,Gene,1997, 202, 133–138PubMedCrossRefGoogle Scholar
  60. [60]
    Prunier A.L., Malbruny B., Laurans M., Brouard J., Duhamel J.F. and Leclercq R., High rate of macrolide resistance in Staphylococcus aureus strains from patients with cystic fibrosis reveals high proportions of hypermutable strains, J. Infect. Dis., 2003, 187, 1709–1716PubMedCrossRefGoogle Scholar
  61. [61]
    Trucksis M., Wolfson J.S., Hooper D.C., A novel locus conferring fluoroquinolone resistance in Staphylococcus aureus, J Bact., 1991, 173(18), 5854–5860PubMedGoogle Scholar
  62. [62]
    Ng, E.Y., Trucksis, M., Hooper, D.C., Quinolone resistance mutations in topoisomerase IV: relationship to the flqA locus and genetic evidence that topoisomerase IV is the primary target and DNA gyrase is the secondary target of fluoroquinolones in Staphylococcus aureus, Antimicrob. Agents Chemother.,1996, 40, 1881–1888PubMedGoogle Scholar
  63. [63]
    Allignet J., Loncle V., Simenel C., Delepierre M., El Solh N., Sequence of a staphylococcal gene, vat, encoding an acetyltransferase inactivating the A-type compounds of virginiamycin-like antibiotics, Gene,1993,130, 91–98PubMedCrossRefGoogle Scholar
  64. [64]
    McGowan, J.E. Jr, Gerding D.N., Does antibiotic restriction prevent resistance?, New Horiz.,1996,4: 370–376PubMedGoogle Scholar
  65. [65]
    Niederman M.S., Is “Crop rotation” of antibiotic the solution to a “resistant” problem to ICU?, Am. J. Resp. Crit. Care Med., 1997; 156: 1029–1031PubMedGoogle Scholar
  66. [66]
    Jarvis, W.R., Handwashing- the Semmelweis lesson forgotten?, Lancet, 1994, 344(8933): 1311–1312PubMedCrossRefGoogle Scholar
  67. [67]
    Casewell, M.W., Hill R.L., Minimal dose requirements for nasal mupirocin and its role in the control of epidemic MRSA., J. Hosp. Infect., 1991;19: 35–40PubMedCrossRefGoogle Scholar
  68. [68]
    Jones M.E., In vitro profile of a new β-lactam, Ceftobiprole with activity against MRSA., Clin. Microbiol. Infect., 2007, 13(2):17–24PubMedCrossRefGoogle Scholar
  69. 69]
    Koga T., Abe T., Harumi I., Takenouchi T., Kitayama A., Yoshida T., et al. In vitro and in vivo antibacterial activities of CS-023 (RO4908463), a novel parenteral carbapenem. Antimicrob. Agents Chemother., 2005, 49(8), 3239–3250PubMedCrossRefGoogle Scholar
  70. [70]
    Sum P.E., Lee V.J., Testa R.T., Hlavka J.J., Ellestad G.A., et al., Glycylcyclines — A new generation of potent antibacterial agents through modification of 9-aminotetracyclines, J. Med. Chem., 1994, 37, 184–188PubMedCrossRefGoogle Scholar
  71. [71]
    Goldstein F.W., Kitzis M.D., Acar, J.F.N., N-Dimethylglycylamido derivatives of minocycline and 6-demethyl-6-desoxytetracycline. Two new glycylcyclines highly effective against tetracyclineresistant gram-positive cocci., Antimicrob. Agents Chemother., 1994, 38, 2218–2220PubMedGoogle Scholar
  72. [72]
    Livermore D.M., Tigecycline: what is it, and where should it be used?, J.Antimicrob. Chemother., 2005,56(4), 611–14PubMedCrossRefGoogle Scholar
  73. [73]
    Bergeron J., Ammirati M., Danley D., Glycylcyclines bind to the high-affinity tetracycline ribosomal binding site and evade Tet (M),-and Tet(O)-mediated ribosomal protection, Antimicrob. Agents Chemother., 1996, 40, 2226–2228PubMedGoogle Scholar
  74. [74]
    Harris, R. and Cruz, M., Tigecycline (Tygacil): A Novel First-in-Class, Broad-Spectrum Intravenous Antibiotic For the Treatment of Serious Bacterial Infections, Pharmacy & Therapeutics, 31(1), 18–27 and 57Google Scholar
  75. [75]
    McKenney D., Quinn J.M., Jackson C.L., Guilmet J.L., Landry J.A., Tanaka S.K., et al. Evaluation of PTK 0796 in experimental model of infections caused by gram positive and gram-negative pathogen. Abstr. InterSc. Conf. Antimicrob. Agents Chemother., 2003, Sep 14–17, abstract no. F-757Google Scholar
  76. [76]
    Shah, P.M., The need for new therapeutic agents: what is in the pipeline?,Clinical Microbiol.Infect., 11, 36–42Google Scholar
  77. [77]
    Zeckel M.L., Preston D.A., Allen B.S., In vitro activities of AntiLY333328 and comparative agents against nosocomial gram positive pathogens collected in a 1997 global surveillance study, Antimicrob. Agents Chemother., 2000, 44(5), 1370–1368PubMedCrossRefGoogle Scholar
  78. [78]
    Barrett J.F., Oritavanacin: Eli Lilly & Co., Curr. Opinion Investig. Drugs, 2001, 2(8), 1039–1044Google Scholar
  79. [79]
    Jabés D., Candiani G., Romanó G., Brunati C., Riva S., and Cavaleri, M., Efficacy of Dalbavancin against Methicillin-Resistant Staphylococcus aureus in the Rat Granuloma Pouch Infection Model. Antimicrob. Agents Chemother., 48(4), 1118–1123Google Scholar
  80. [80]
    Lin G., Credito K., Ednie L.M. and Appelbaum, P.C., Antistaphylococcal activity of Dalbvancin, an experimental glycopeptide, Antimicrob. Agents Chemother., 2005,49(2), 770–772PubMedCrossRefGoogle Scholar
  81. [81]
    O’Hare M.D., Ghosh G., Felmingham D. and Grüeberg R.N., In vitro studies with ramoplanin (MDL 62,198): a novel lipoglycopeptide antimicrobial, J. Antimicrob.Chemother.,1990,25,217–220PubMedCrossRefGoogle Scholar
  82. [82]
    Montecalvo M.A., Ramoplanin: a novel antimicrobial agent with the potential to prevent vancomycinresistant enterococcal infection in high-risk patients, J. Antimicrob.Chemother., 2003, 51(Suppl. S3), iii31–iii35PubMedGoogle Scholar
  83. [83]
    Takahata M., Mitsuyama J., Yamashiro Y., Yonezawa M., Araki H., Todo Y., et al., In vitro and in vivo antimicrobial activities of T-3811ME, a novel des-F(6)-quinolone, Antimicrob. Agents Chemother., 1999, 43:1077–84PubMedGoogle Scholar
  84. [84]
    Noviello S., Ianniello F., Leone S. and Esposito S., Comparative activity of garenoxacin and other agents by susceptibility and time-kill testing against Staphylococcus aureus, Streptococcus pyogenes and respiratory pathogens, J. Antimicrob. Chemother., 2003, 52,869–872PubMedCrossRefGoogle Scholar
  85. [85]
    Schmitz FJ, Fluit AC, Milatovic D, Verhoef J., Heinz H.P. and Brisse S., In vitro potency of moxifloxacin, clinafloxacin and sitafloxacin against 248 genetically defined clinical isolates of S.aureus, J. Antimicrob. Chemother., 2006, 46, 109–113CrossRefGoogle Scholar
  86. [86]
    Bhagwat SS, Mundkar LA, Gupte SV, Patel M.V., and Khorakiwala H.F., The anti- MRSA quinolone WCK771 has potent activity against sequentially labeled mutants and has a narrow mutant selection windows against quinolone resistant S. aureus and preferentially targets DNA gyrase. Antimicrob. Agents Chemother., 2006, 50(11), 3568–3579PubMedCrossRefGoogle Scholar
  87. [87]
    Das B., Rudra S., Yadav A., Ray A., Raja Rao A.V.S., Srinivas A.S.S.V., et al., Synthesis and SAR of novel oxazolidinones: discovery of ranbezolid, Bioorg.Med.Chem.Lett., 2005, 15(19), 4261–4267PubMedCrossRefGoogle Scholar
  88. [88]
    Mathur T., Bhateja P., Pandya M., Fatma T., Rattan A., In vitro activity of RBx 7644(ranbezolid) on biofilm producing bacteria, Int.J. Antimicrob. Agents, 2004, 24(4),369–373PubMedCrossRefGoogle Scholar
  89. [89]
    Rattan A., RBx-7644: Oxazolidinone antibacterial, Drugs of the future, 2003, 28(11),1070–1077CrossRefGoogle Scholar
  90. [90]
    Bush K., Macielag M. and Weidner-Wells, M., Taking inventory: antibacterial agents currently at or beyond Phase 1, Curr. Opin. Microbiol., 2004, 7(5), 466–476PubMedCrossRefGoogle Scholar
  91. [91]
    Gill C.J., Abruzzo G.K., Flattery A.M., Misura A.S., Bartizal K., Hickey E.J., In Vivo Efficacy of a Novel Oxazolidinone Compound in Two Mouse Models of Infection, Antimicrob. Agents Chemother., 2007, 51(9), 3434–3436PubMedCrossRefGoogle Scholar
  92. [92]
    Yuan Z., Trias J., White R.J., Deformylase as a novel antibacterial target, Drug Discovery Today, 2001,6(18), 954–961PubMedCrossRefGoogle Scholar
  93. [93]
    Credito K, Lin G, Ednie LM and Appelbaum P.C., Antistaphylococcal activity of LBM415, a new peptide deformylase inhibitor, compared with those of other agents, Antimicrob. Agents Chemother. 2004, 48, 4033–4036PubMedCrossRefGoogle Scholar
  94. [94]
    Hoang T.T., Schweizer H.P., Fatty acid biosynthesis in Pseudomonas aeruginosa: cloning and characterization of the fabAB operon encoding β-hydroxydecanoyl-acyl carrier protein dehydratase (FabA) and β-ketoacyl-acyl carrier protein synthase I (FabB). J Bacteriol., 1997,179, 5326–5332PubMedGoogle Scholar
  95. [95]
    Heath R.J., Rubin J.R., Holland D.R., Zhang E., Snow M.E., and Rock C.O., Mechanism of Triclosan Inhibition of Bacterial Fatty Acid Synthesis, J. Biol. Chem. 1999, 274(16), 11110–11114PubMedCrossRefGoogle Scholar
  96. [96]
    Payne D.J., Warren P.V., Holmes D.J., Ji Y., Lonsdale J.T., Bacterial fatty-acid biosynthesis: a genomics-driven target for antibacterial drug discovery, Drug Discovery Today, 2001, 6(10), 537–4444PubMedCrossRefGoogle Scholar
  97. [97]
    Oh K.B., Oh M.N., Kim J.G., Shin D.S., Shin J, Inhibition of sortase-mediated Staphylococcus aureus adhesion to fibronectin via fibronectin-binding protein by sortase inhibitors, Appl. Microbiol. Biotechnol., 2005, 70(1),102–106PubMedCrossRefGoogle Scholar
  98. [98]
    Kim S.H., Shin D.S., Oh M.N., Chung S.C., Lee J.S., Chang I.M., Oh K.B., Inhibition of Sortase, a Bacterial Surface Protein Anchoring Transpeptidase, by β-Sitosterol-3-O-glucopyranoside from Fritillaria verticillata, BioSci. Biotech. Biochem., 2003, 67(11): 2477–2479CrossRefGoogle Scholar
  99. [99]
    Riedlinger J., Reicke A., Zähner H., Krismer B., Bull A.T., Maldonado L.A., Ward A.C., Goodfellow M., Bister B., Bischoff D., Süssmuth R.D., Fiedler H.P., “Abyssomicins, inhibitors of the paraaminobenzoic acid pathway produced by the marine Verrucosispora strain AB-18-032” J. Antibiot., 2004, 57, 271–279PubMedGoogle Scholar
  100. [100]
    Allsop A.E., New Antibiotic discovery, novel screens, novel targets and impact of genomics, Curr. Opin. Microbiol.,1998, 1(5),530–534PubMedCrossRefGoogle Scholar
  101. [101]
    Dunman PM, Murphy E, Haney S, Kellogg G.T., Wu S., et al., Transcription Profiling-Based Identification of Staphylococcus aureus Genes Regulated by the agr and/or sarA Loci, J. Bacteriol. 2001, 183, 7341–7353PubMedCrossRefGoogle Scholar
  102. [102]
    Liu J., Dehbi M, Moeck G, Arhin F., Bauda P., Bergeron D., et al., Antimicrobial drug discovery through bacteriophage genomics, Nature Biotech., 2004, 22(2), 185–191CrossRefGoogle Scholar
  103. [103]
    Moreillon P.,The efficacy of amoxicillin /clavulanate (Augmentin) in treatment of severe staphylococcal infections, J Chemother.1994, 6(2). 51–57Google Scholar
  104. [104]
    Prieto J, Aguilar L, Gimenez MJ, Toro D., Gómez-Lus M. L., Dal-Ré R., et al. In vitro Activities of co-amoxiclav at concentrations achieved in human serum against the resistant subpopulation of heteroresistant Staphylococcus aureus: a Controlled Study with vancomycin, Antimicrob. Agents Chemother.,1998,42(7),1574–1577PubMedGoogle Scholar
  105. [105]
    Edouard R.S., Pestel-Caron M., Lemeland J.F., Caron F., In vitro synergistic effects of double and triple combinations of β-Lactams, vancomycin, and netilmicin against methicillin-resistant Staphylococcus aureus strains, Antimicrob. Agents Chemother., 2004, 44(11), 3055–3060CrossRefGoogle Scholar
  106. [106]
    Shelburne S.A., Musher D.M., Hulten K., Ceasar H., Lu M.Y., Bhaila I., et al. In vitro killing of community-associated methicillin-resistant Staphylococcus aureus with drug combinations, Antimicrob. Agents Chemother., 2004, 48, 4016–4019PubMedCrossRefGoogle Scholar
  107. [107]
    Rand K.H. and Houck H., Synergy of daptomycin with oxacillin and other β-Lactams against methicillin resistant Staphylococcus aureus, Antimicrob. Agents Chemother., 2004,48(8),2871–2875CrossRefGoogle Scholar
  108. [108]
    Kono K., Tatara I., Takeda S., Arakawa K., Shirotani T., Okada M. et al. Antibacterial activity of epigallocatechin gallate methicillin resistant Staphylococcus aureus. Journal of Japan Association of Infectious Diseases,1994,68,1518–1522Google Scholar
  109. [109]
    Shiota S., Shimizu M., Mizushima T., Ito H., Hatano T., Yoshida T., Tsuchiya T., Marked reduction in the minimum inhibitory concentration (MIC) of betalactams in methicillin-resistant Staphylococcus aureus produced by epicatechin gallate, an ingredient of green tea (Camellia sinensis)., Biol. Pharm. Bull.,1999, 22(12), 1388–1390PubMedGoogle Scholar
  110. [110]
    Takahashi O., Cai Z., Toda M., Hara Y., Shimamura T. et al., Appearance of antibacterial activity of oxacillin againt methicillin resistant Staphylococcus aureus (MRSA) in the presence of catechin. Journal of Japan Association of Infectious Diseases, 1995,69: 1126–1134Google Scholar
  111. [111]
    Hamilton-Miller J.M, Shah S., Activity of tea component epicatechin gallate and analogues against methicillin resistant Staphylococcus aureus, J Antimicrob. Chemother., 2000, 46, 852–853PubMedCrossRefGoogle Scholar
  112. [112]
    Zhao W.H., Hu Z., Okubo S., Hara Y. and Shimamura T., Mechanism of synergy between epicatechin gallate and β-Lactams against methicillin resistant Staphylococcus aureus, Antimicrob. Agents Chemother., 2001, 45(6), 1737–1742PubMedCrossRefGoogle Scholar
  113. [113]
    Nicolson K., Evan G. and O’Toole P.W., Potentiation of methicillin activity against methicillin-resistant Staphylococcus aureus by diterpenes, FEMS Microbiol. Lett.,1999, 179(2), 233–239PubMedCrossRefGoogle Scholar
  114. [114]
    Smith E.C.J., Kaatz G.W., Seo S.M., Wareham N., Williamson E.M. et al., The phenolic diterpene totarol inhibits multidrug efflux pump activity in S. aureus. Antimicrob. Agents Chemother.,2007, 51(12): 4480–4483PubMedCrossRefGoogle Scholar
  115. [115]
    Schmitz F.J., Fluit A.C., Luckefahr M., Engler B., Hofmann B., Verhoef J. et al. The effect of reserpine, an inhibitor of multidrug efflux pumps, on the in vitro activities of ciprofloxacin, sparfloxacin and moxifloxacin against clinical isolates of Staphylococcus aureus, J. Antimicrob. Chemother.,1998, 42, 807–810PubMedCrossRefGoogle Scholar
  116. [116]
    Gibbons S. and Udo E.E., The effect of reserpine, a modulator of multidrug efflux pumps on the in vitro activity of tetracycline against clinical isolates of methicillin resistant Staphylococcus aureus possessing tet(k) determinant, Phytother. Res., 2000, 74,139–140CrossRefGoogle Scholar
  117. [117]
    Stermitz F.R., Lorenz P., Tawara J.N., Zenewicz L.A., Lewis K., Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5-methoxyhydnocarpin, a multidrug pump inhibitor, Proc. Natl. Acad. Sci. USA, 2000,97,1433–1437PubMedCrossRefGoogle Scholar
  118. [118]
    Stermitz F.R., Matsuda J.T., Lorenz P., Mueller P., Zenewicz L., Lewis K., et al.,5-Methoxy-hydnocarpin and pheophorbide A: Berberis species components which potentiate berberine growth inhibition of resistant Staphylococcus aureus. J. Nat. Prod., 2000, 63, 1146–1149PubMedCrossRefGoogle Scholar
  119. [119]
    Oluwatuyi M., Kaatz G.W. and Gibbons S., Antibacterial and resistance modifying activity of Rosmarinus officinalis, Phytochem., 2004, 65(2) 3249–3254CrossRefGoogle Scholar
  120. [120]
    Fujita M., Shiota S., Kuroda T., Tsutomu H., Takashi Y., Tohru M., et al., Remarkable synergies between baicalein and tetracycline and baicalein and β-Lactams against methicillin resistant Staphylococcus aureus, Microbiol. Immunol., 2005, 49, 391–396PubMedGoogle Scholar
  121. [121]
    Khan I.A., Mirza Z.M., Kumar A., Verma V., Qazi G.N., Piperine, a phytochemical potentiator of ciprofloxacin against Staphylococcus aureus. Antimicrob. Agents Chemother., 2006, 50(2), 810–812PubMedCrossRefGoogle Scholar
  122. [122]
    Smith P., Stewart J., Fyfe L., Influence of subinhibitory concentrations of plant essential oils on the production of enterotoxins A and B and α-toxin by Staphylococcus aureus, J. Med. Microbiol., 2004, 53, 1023–1027CrossRefGoogle Scholar
  123. [123]
    Dickson R.A., Houghton P.J., Hylands P.J., Gibbons S.,; Antimicrobial, resistance-modifying effects, antioxidant and free radical scavenging activities of Mezoneuron benthamianum Baill., Securinega virosa Roxb. & Wlld. and Microglossa pyrifolia Lam., Phytother. Res., 2006, 20, 41–45PubMedCrossRefGoogle Scholar
  124. [124]
    Braga C., Leite A.A.M., Xavier K.G.S., Takahashi, J A., Bemquerer, M P., Chartone-Souza E., et al. Synergic interaction between pomegranate extract and antibiotics against Staphylococcus aureus, Can. J Microbiol., 2005, 51(7), 541–547PubMedCrossRefGoogle Scholar
  125. [125]
    Okusa P.N., Penge O., Devleeschouwer M., Duez P., Direct and indirect antimicrobial effects and antioxidant activity of Cordia gilletii De Wild (Boraginaceae), J. Ethnopharmacol., 2007, 112(3), 476–481PubMedCrossRefGoogle Scholar
  126. [126]
    Wright G.D., Resisting resistance: New chemical strategies for battling superbugs,Chem. Biol., 2000,7, R127–32PubMedCrossRefGoogle Scholar
  127. [127]
    Kristiansen J.E., The antimicrobial activity of psychotherapeutic drugs and stereo-isomeric analogues, Dan. Med. Bull.,1990,37,165–182PubMedGoogle Scholar
  128. [128]
    Kristiansen J.E., Chlorpromazine: non-antibiotics with antimicrobial activity-new insights in managing resistance?, Curr.Opin.Investig. Drugs,1993, 2, 587–591Google Scholar
  129. [129]
    Kristiansen J.E., Amaral L., The potential management of resistant infections with nonantibiotics, J. Antimicrob. Chemother., 1997, 40, 319–327PubMedCrossRefGoogle Scholar
  130. [130]
    Kaatz G.W., Moudgal V.V., Seo S.M, Kristiansen J.E., Phenothiazines and thioxanthenes inhibit multidrug efflux pump activity in Staphylococcus aureus, Antimicrob. Agents Chemother., 2003, 47, 719–726PubMedCrossRefGoogle Scholar
  131. [131]
    LAM K.S.,Discovery of novel metabolites from marine actinomycetes, Curr. Opin. Microbiol. 2006, 9, 245–251Google Scholar
  132. [132]
    Gomber C., Saxena S.. Anti-staphylococcal potential of Callistemon rigidus, Central European Journal of Medicine, 2007, 2(1),79–88CrossRefGoogle Scholar
  133. [133]
    Katarere D.R., Eloff J.N., Antibacterial and Antioxidant activity of Sutherlandia frutescens (Fabaceae) a reputed anti HIV/AIDS phytomedicine, Phytother. Res., 2005, 19(9), 779–781CrossRefGoogle Scholar
  134. [134]
    Akinyemi K.O., Oladapo O., Okwara C.E., Ibe C.C. and Fasure K.A., Screening of crude extracts of six medicinal plants used in South-West Nigerian unorthodox medicine for anti-methicillin resistant Staphylococcus aureus activity, BMC Complementary and Alternative Medicine,2005, 5, 6 (doi:10.1186/1472-6882-5-6)PubMedCrossRefGoogle Scholar
  135. [135]
    Nitta T., Arai T., Takamatsu H., Inatomi Y., Murata H., Iinuma M., Tanaka T., Ito T., Asai F., Ibrahim I., Nakanishi T. and Watabe K., Antibacterial Activity of Extracts Prepared from Tropical and Subtropical Plants on Methicillin-Resistant Staphylococcus aureus, Jour. Health Sciences,. 2002, 4, 273–276CrossRefGoogle Scholar
  136. [136]
    Gibbons S., Anti-Staphylococcal plant natural products, Nat. Prod. Rep., 2004, 21, 263–277PubMedCrossRefGoogle Scholar
  137. [137]
    Schempp C.M., Pelz K., Wittmer A., Schöpf E., Simon J.C., Antibacterial activity of hyperforin from St John’s wort, against multiresistant Staphylococcus aureus and gram-positive bacteria, Lancet, 1999, 353(9170), 2129PubMedCrossRefGoogle Scholar
  138. [138]
    Iinuma M., Tosa H., Tanaka T., Asai F., Kobayashi Y., Shimano R., Miyauchi K., Antibacterial activity of Xanthones from guttiferous plants against Methicillin resistant Staphylococcus aureus, J. Pharm. Pharmacol.,1996,48(8), 861–65PubMedGoogle Scholar
  139. [139]
    Keller M. and Zengler K. Tapping into microbial diversity, Nature Rev. Microb. 2004, 2(2),141–150.CrossRefGoogle Scholar
  140. [140]
    Demain A.L., Microbial natural products: Alive and well in 1998, Nature Biotechnol., 1998, 16, 3–4CrossRefGoogle Scholar
  141. [141]
    Demain A.L., Pharmacologically active secondary metabolites of microorganisms, Appl. Microbiol. Biotechnol., 1999, 52, 455–463PubMedCrossRefGoogle Scholar
  142. [142]
    Tulp M. and Bohlin L. Functional versus chemical diversity: is biodiversity important for drug discovery?, Trends Pharmacol. Sci., 2002, 23, 225–231PubMedCrossRefGoogle Scholar
  143. [143]
    Wang J., Soisson S.M., Young K., Shoop W., Kodali S., Galgoci A., Painter R.,et al., Platensimycin is a selective Fab F inhibitor with potent antibiotic properties, Nature, 2006, 441: 358–361PubMedCrossRefGoogle Scholar
  144. [144]
    Bull A.T., Stach J.E., Ward A.C., Goodfellow M., Marine actinobacteria: Perspectives, challenges, future directions, Antonie Van Leeuwenhoek, 2005, 87, 65–79CrossRefGoogle Scholar
  145. [145]
    Strobel G. and Daisy B., Bioprospecting for microbial endophytes and their natural products, Microb. Mol.Biol. Rev. 2003, 67(4), 491–502CrossRefGoogle Scholar
  146. [146]
    Castillo U., Strobel G.A., Ford E.J., Hess W.M., Porter H., Jensen J.B., et.al., Munumbicins, widespectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigricans, Microbiol., 2002, 148, 2675–2685Google Scholar
  147. [147]
    Lee L.Y, Miyamoto Y.J., McIntyre B.W., Hook M., McCrea K.W., McDevitt D., Brown E.L., The Staphylococcus Map Protein is an immunomodulator that interferes with T-cell mediated responses, J. Clin. Invest., 2002, 110, 1461–1471PubMedGoogle Scholar
  148. [148]
    Shinefield H., Black S., Fattom A., Horwith G., Rasgon S., Ordonez J.,et al., Use of a Staphylococcus aureus conjugate vaccine in patients receiving hemodialysis, N. Engl. J. Med., 2002, 346, 491–496PubMedCrossRefGoogle Scholar
  149. [149]
    Burnie J.P., Matthews R.C., Carter T., Beaulieu E., Donohoe M., Chapman C., Williamson P. and Hodgetts S.J., Identification of an Immunodominant ABC Transporter in Methicillin-Resistant Staphylococcus aureus Infections, Infect. Immun., 2000, 68(6), 3200–3209PubMedCrossRefGoogle Scholar
  150. [150]
    Schuhardt V.T., Schindler C.A., Lysostaphin therapy in mice infected with Staphylococcus aureus., J Bacteriol., 1964,88, 815–816PubMedGoogle Scholar
  151. [151]
    Kusuma C.M., Kokai-Kun J.F., Comparison of Four Methods for Determining Lysostaphin Susceptibility of Various Strains of Staphylococcus aureus, Antimicrob. Agents Chemother., 2005, 49, 3256–3263PubMedCrossRefGoogle Scholar
  152. [152]
    Kokai-Kun J.F., Walsh S.M., Chanturiya T., Mond J.J., Lysostaphin cream eradicates Staphylococcus aureus nasal colonization in a cotton rat model. Antimicrob. Agents Chemother., 2003, 47(5),1589–1597PubMedCrossRefGoogle Scholar
  153. [153]
    Yang X., Cong-Ran L., Ren-Hui L., Wang Y.M., Zhang W.X., Chen H.Z., et al., In vitro activity of recombinant lysostaphin against Staphylococcus aureus isolates from hospitals in Beijing, China Journal of Medical Microbiology, 2007, 56, 71–76CrossRefGoogle Scholar
  154. [154]
    Kiri N., Gordon A., Climo M.W., Combinations of Lysostaphin with β-Lactams are synergistic against oxacillin-resistant Staphylococcus epidermidis,Antimicrob.Agents Chemother., 2002, 6(6), 2017–2020CrossRefGoogle Scholar
  155. [155]
    Vavra S.B., Roberta B.C., Robert S.D., Development of vancomycin and lysostaphin resistance in a methicillin-resistant Staphylococcus aureus isolate, J. Antimicrob. Chemother., 2001,48, 617–625CrossRefGoogle Scholar
  156. [156]
    Stranden A., Ehlert K., Labischinski H., Berger-Bachi B., Cell wall monoglycine cross-bridges and methicillin hypersusceptibility in a fem AB null mutant of methicillin-resistant Staphylococcus aureus,J. Bacteriol.,1997,179, 9–16PubMedGoogle Scholar
  157. [157]
    Ling B. and Berger-Bachi, B., Increased overall antibiotic susceptibility in Staphylococcus aureus femAB null mutants. Antimicrob. Agents Chemother., 1998, 42,936–938PubMedGoogle Scholar
  158. [158]
    Schneider M.M.S., Berger-Bächi B., Tossi A., Sahl A.G., Wiedemann I., In vitro assembly of a complete, pentaglycine interpeptide bridge containing cell wall precursor (lipid II-Gly5) of Staphylococcus aureus, Mol. Microbiol., 2004, 53(2), 675–685PubMedCrossRefGoogle Scholar
  159. [159]
    Hutchinson C.R., Combinatorial biosynthesis for new drug discovery, Curr.Opin Microb.,1998, 1, 319–329CrossRefGoogle Scholar
  160. [160]
    Borchardt J.K., Genetic engineering may keep one of the richest drug gold mines from being played out, Modern Drug Discovery,1999, 2(4), 22–29Google Scholar
  161. [161]
    Jacobsen J.R., Khosla C.,New directions in metabolic engineering.,Curr.Opin. Chem. Biol.,1998, 2,133–137PubMedCrossRefGoogle Scholar
  162. [162]
    Saxena, S. and Kumar D., Human pathogenic bacteria-plant interaction: Potential as novel antimicrobials, International Journal of Biomedical and Pharmaceutical Sciences, 2007,1(2), 120–123Google Scholar
  163. [163]
    Baltz R.H., Vivian M. Stephen K.W., Natural products to drugs: daptomycin and related lipopeptide antibiotics, Nat. Prod. Rep., 2005, 22, 717–717PubMedCrossRefGoogle Scholar
  164. [164]
    Yin X, Zabriskie TM., The enduracidin biosynthetic gene cluster from Streptomyces fungicidicus, Microbiol., 2006, 152, 2969–2983CrossRefGoogle Scholar

Copyright information

© © Versita Warsaw and Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Natural Products & Drug Discovery, Department of Biotechnology and Environmental SciencesThapar UniversityPatialaIndia

Personalised recommendations